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The coherent states for twist-deformed oscillator model provided in
article by M. Daszkiewicz, C.J. Walczyk [Acta Phys. Pol. B 40, 293 (2009)]
are constructed. Besides, it is demonstrated that the energy spectrum of
considered model is labeled by two quantum numbers — by the so-called
main and azimutal quantum numbers respectively.
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The suggestion to use noncommutative coordinates goes back to Heisen-
berg and was firstly formalized by Snyder in [1]. Recently, there were also
found formal arguments based mainly on Quantum Gravity [2, 3] and String
Theory models [4, 5], indicating that space-time at Planck scale should be
noncommutative, i.e. it should have a quantum nature. Consequently, there
appeared a lot of papers dealing with noncommutative classical and quan-
tum mechanics (see e.g. [6, 7]) as well as with field theoretical models (see
e.g. [8, 9]), in which the quantum space-time is employed.

In accordance with the Hopf-algebraic classification of all deformations
of relativistic [10] and nonrelativistic [11] symmetries, one can distinguish
three basic types of space-time noncommutativity:

1. The canonical (soft) deformation

[ xµ, xν ] = iθµν , (1)

(917)



918 M. Daszkiewicz, C.J. Walczyk

with constant and antisymmetric tensor θµν . The explicit form of
corresponding Poincare Hopf algebra has been provided in [12, 13],
while its nonrelativistic limit has been proposed in [14].

2. The Lie-algebraic case

[ xµ, xν ] = iθρµνxρ , (2)

with particularly chosen constant coefficients θρµν . Particular kind of
such space-time modification has been obtained as representations of
κ-Poincare [15, 16] and κ-Galilei [17] Hopf algebras. Besides, the Lie-
algebraic twist deformations of relativistic and nonrelativistic symme-
tries have been provided in [18, 19] and [14], respectively.

3. The quadratic deformation

[ xµ, xν ] = iθρτµνxρxτ , (3)

with constant coefficients θρτµν . Its Hopf-algebraic realization was pro-
posed in [20, 21] and [19] in the case of relativistic symmetry, and in
[22] for its nonrelativistic counterpart.
Besides, it has been demonstrated in [23], that in the case of the
so-called N -enlarged Newton–Hooke Hopf algebras U (N)

0 (NH±), the
twist deformation provides the new space-time noncommutativity of
the form1,2

4.
[ t, xi ] = 0 , [ xi, xj ] = ifκ± (t) θij(x) , (4)

with time-dependent functions

fκ+ (t) = κf

(
sinh

(
t

τ

)
, cosh

(
t

τ

))
,

fκ− (t) = κf

(
sin

(
t

τ

)
, cos

(
t

τ

))
,

θij(x) ∼ θij = const or θij(x) ∼ θkijxk and τ as well as κ denoting
the cosmological constant and deformation parameter respectively. It
should be also noted that different relations between all mentioned
above quantum spaces 1, 2, 3 and 4 have been summarized in arti-
cle [23].

1 x0 = ct.
2 The discussed space-times have been defined as the quantum representation spaces,
the so-called Hopf modules (see e.g. [12, 13]), for quantum N -enlarged Newton–Hooke
Hopf algebras.
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Let us now turn to the quantum oscillator model defined on the twist-
deformed phase space [24]3

[ t, x̄i ] = 0 , [ x̄1, x̄2 ] = ifκ(t) , [ x̄i, p̄j ] = i~δij , [ p̄i, p̄j ] = 0 . (5)

Its dynamic is given by the following Hamiltonian function with constant
mass m and frequency ω

H̄(p̄, x̄) =
1

2m

(
p̄21 + p̄22

)
+

1

2
mω2

(
x̄21 + x̄22

)
. (6)

In order to analyze the above system, we represent the noncommutative
variables (x̄i, p̄i) on classical phase space (xi, pi) as follows (see e.g. [25, 26])

x̄1 = x̂1 −
fκ(t)

2~
p̂2 , x̄2 = x̂2 +

fκ(t)

2~
p̂1 , (7)

where
[ x̂i, x̂j ] = 0 = [ p̂i, p̂j ] , [ x̂i, p̂j ] = i~δij . (8)

Then, the Hamiltonian (6) takes the form4

Hf (t) =

(
p̂21 + p̂22

)
2Mf (t)

+
1

2
Mf (t)Ω2

f (t)
(
x̂21 + x̂22

)
− fκ(t)

2~
mω2L̂ , (9)

with symbol
L̂ = x̂1p̂2 − x̂2p̂1 (10)

denoting angular momentum of particle. Besides, the coefficientsMf (t) and
Ωf (t) present in the above formula denote the time-dependent functions
given by

Mf (t) =
m

1 + m2ω2f2κ(t)
4~2

, Ωf (t) = ω

√
1 +

m2ω2f2κ(t)

4~2
, (11)

respectively, such that

Mf (t)Ω2
f (t) = mω2 = const . (12)

Further, we introduce a set of time-dependent creation (a†A(t)) and annihi-
lation (aA(t)) operators

â±(t) =
1

2
√
~

[
(p̂1 ± ip̂2)√
Mf (t)Ωf (t)

− i
√
Mf (t)Ωf (t)(x̂1 ± ix̂2)

]
, (13)

3 See type 4 of quantum space-time.
4 It should be noted that for fκ(t) = θ, we get the canonically deformed oscillator
model provided in [26].
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satisfying the standard commutation relations

[ âA, âB ] = 0 ,
[
â†A, â

†
B

]
= 0 ,

[
âA, â

†
B

]
= δAB ; A,B = ± . (14)

Then, one can easily check that in terms of the operators (13) the Hamilto-
nian function (9) looks as follows

Ĥf (t) = Ω+(t)
(
N̂+(t) + 1

2

)
+Ω−(t)

(
N̂−(t) + 1

2

)
, (15)

with

Ω±(t) = Ωf (t)∓ fκ(t)mω2

2~
, (16)

and number operators in ± direction given by

N̂±(t) = â†±(t)â±(t) , (17)

respectively. Moreover, we see that the energy eigenvectors can be generated
in a standard way as follows

|n+, n−, t〉 =
1√
n+!

1√
n−!

(
â†+(t)

)n+
(
â†−(t)

)n−
|0〉 , (18)

while the corresponding (parameterized by n+ and n−) eigenvalues are

En+,n−(t) = Ω+(t)
(
n+ + 1

2

)
+Ω−(t)

(
n− + 1

2

)
, n+, n− = 0, 1, 2, . . . (19)

Besides, using operator representation (13), one finds

(∆x̂i)
2
|n+,n−,t〉(∆p̂i)

2
|n+,n−,t〉 =

~2

4
(1 + n+ + n−)2 , (20)

where symbol (∆â)|ϕ〉 denotes the uncertainty of observable â in quantum
state |ϕ〉. The above result means that momentum-position uncertainty
relations for eigenstates (18) become saturated only for n+ = n− = 0, i.e.
only for vacuum vector |0〉. Apart from that, it is easy to see that the
momentum operator (10) can be written as follows

L̂ = ~
(
â†−(t)â−(t)− â†+(t)â+(t)

)
, (21)

while its action on quantum states (18) is given by

L̂|n+, n−, 〉 = ~(n− − n+)|n+, n−, t〉 . (22)
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Consequently, the energy spectrum (19) can be written in terms of eigenval-
ues (22) as follows

En+,n−(t) = ~Ωf (t)(n+ + n− + 1) +
fκ(t)Mf (t)Ω2

f (t)

2
(n− − n+) . (23)

Let us now solve two problems. First of them concerns the construc-
tion of the so-called coherent states for considered model, i.e. the quantum
vectors which saturate the momentum-position Heisenberg uncertainty rela-
tions. The second problem applies to the proper interpretation of quantum
numbers n = n+ + n− and l = n− − n+ labeling the energy spectrum (23).

Hence, let us consider the quantum states of the form

|c+, c−, t〉 =
∑
n+,n−

c
n+
+ e−

1
2
|c+|2√

n+!

c
n−
− e−

1
2
|c−|2√

n−!
|n+, n−, t〉 , (24)

which play the role of the eigenfunctions for annihilation operators (13)

â±(t)|c+, c−, t〉 = c±|c+, c−, t〉 . (25)

By direct calculation, one may check that

(∆pi)
2
|c+,c−,t〉 =

~Mf (t)Ωf (t)

2
, (∆xi)

2
|c+,c−,t〉 =

1

2

~
Mf (t)Ωf (t)

, i = 1, 2 ,

(26)
what leads to the saturated momentum-position Heisenberg uncertainty re-
lations

(∆pi)
2
|c+,c−,t〉(∆xi)

2
|c+,c−,t〉 =

~2

4
, i = 1, 2 . (27)

Consequently, we see that the vectors (24) are, in fact, nothing else than the
coherent states for twist-deformed oscillator model, satisfying〈
Ĥf

〉
|c+,c−,t〉

= E|0,0,t〉(t)+
Ωf (t)

~
(∆L)2|c+,c−,t〉+

Mf (t)Ω2
f (t)fκ(t)

2~
〈L〉|c+,c−,t〉 ,

(28)
with

〈L〉|c+,c−,t〉 = ~
(
|c−|2 − |c+|2

)
, (29)

(∆L)2|c+,c−,t〉 = ~2
(
|c−|2 + |c+|2

)
. (30)

In the case of second problem, one should solve the eigenvalue equation
for Hamiltonian (9) written in terms of polar coordinates

Ĥf (t)ψ(r, ϕ, t) = E(t)ψ(r, ϕ, t) , (31)
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where

Ĥf (t) = − ~2

2Mf (t)

(
∂2

∂r2
+

1

r

∂

∂r
− 1

~2
L̂2

r2

)

+
Mf (t)Ω2

f (t)

2
r2 −

fκ(t)Mf (t)Ω2
f (t)

2~
L̂ , (32)

and
L̂ = −i~ ∂

∂ϕ
,

[
Ĥ, L̂

]
= 0 . (33)

To this aim, it is convenient to take the corresponding eigenfunctions in the
form

ψ(r, ϕ, t) = φ(ϕ)R(r, t) , (34)
with its azimutal part φ(ϕ) satisfying

L̂φl(ϕ) = ~lφ(ϕ) , φl(ϕ) =
1√
2π
eilϕ , l = 0,±1,±2 , . . . (35)

Then, the proper equation for radial function R(r, t) looks as follows(
− ∂2

∂ρ2
− 1

ρ

∂

∂ρ
+
l2

ρ2
+
ρ2

4
− El(t)

)
Rl(ρ(t)) = 0 ,

El(t) =
E(t)− fκ(t)Mf (t)Ω

2
f (t)

2 l

~Ωf (t)
, (36)

where ρ(t) = r
√

2Mf (t)Ωf (t)/~ plays the role of dimensionless variable. Its
physical solution can be written as

R
(n)
l (ρ(t)) = w

(n)
l (ρ(t))e−ρ

2(t)/4 , (37)

with w(n)
l (ρ(t)) denoting the polynomial of degree n. Then, equation (36)

reduces to the following one

−
∂2w

(n)
l (ρ(t))

∂ρ2
+
ρ2 − 1

ρ

∂w
(n)
l (ρ(t))

∂ρ

+
l2

ρ2
w

(n)
l (ρ(t))− (El(t)− 1)w

(n)
l (ρ(t)) = 0 , (38)

for which the solution (this time) is given by5

w
(n)
l (ρ(t)) = a

(n)
l

1 +

(n−|l|)/2∑
k=1

[
k∏
s=1

n+ 2− (2s+ |l|)
l2 − (2s+ |l|)2

]
ρ2k(t)

 ρ|l|(t) (39)

5 The symbol a(n)l denotes the normalization factor.
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only when

El(t)→ E
(n)
l (t) = n+1 , l ∈ {−n,−n+2, . . . , n−2, n} , n = 0, 1, 2, 3, . . . ,

(40)
or (equivalently)

E
(n)
l (t) = ~Ωf (t)(n+ 1) +

fκ(t)Mf (t)Ω2
f (t)

2
l . (41)

Consequently, after substitution n = n+ + n− and l = n− − n+ into eigen-
values (41), we get, in fact, the energy spectrum (23) labeled by n+ and
n− parameters. For this reason as well as due to the formulas (35), (37)
and (41), the quantities n and l may be called the “main” and “azimutal”
quantum numbers respectively.
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Centre grant No. 2011/01/B/ST2/03354.
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