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1. Introduction

Although nuclei are close to 55 orders of magnitude lighter than a typ-
ical neutron star, it seems that the state of the above two objects can be
determined by the same equation, which is the equation of state (EOS)
of nuclear matter. In this case, EOS is defined as the average energy per
baryon expressed as a function of thermodynamic variables. It seems that
the above statement can be more easily justified for heavy nuclei but, as can
be shown, using an appropriate form of the equation of state can give good
results also for the ground states of lighter nuclei. We arrived at these con-
clusions using semi-classical, microscopic version of the liquid drop model in
which dynamics is governed by EOS.

The description of the nuclear dynamics, which uses the concept of the
equation of state, can be found in the reaction models referring to the liquid
drop model (LDM) [1]. In this description, it is assumed that the energy of
the system is determined mainly by the following three components:

— the volume energy defined by the kinetic energy related to internal,
fermionic motion and respective potential interactions for infinite nu-
clear matter in equilibrium,
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— the surface energy, which in classical description could be treated as a
result of the surface tension action,

— the Coulomb energy associated with the proton charge.

Such models typically assume one body dissipation and incompressibility
of nuclear matter. In such an approach, the volume energy together with
energies which are corrections related to a not equal number of protons
and neutrons and a non-zero spin of the system may be treated as the 0th

term of the expansion of the energy density function (given by EOS). An
incompressibility assumed in this model introduces additional constraints on
the global coordinates which describe the system shape and its evolution.

In our microscopic description of the system evolution, we take into
account also the next term in the expansion of the equation of state as a
function of the density of nuclear matter. The presented approach treats the
local density of the nuclear matter as a result of the aggregation of partial
densities given by Gaussian packets which represent the nucleons forming
the system. As a result, the local density of a matter is explicitly given
by the position of these packages and their variance. In our approach, we
describe the volume energy as the respective functional (volume integral of
the energy density given by the equation of state multiplied by the density
of the nuclear matter).

The nuclear EOS describes equilibrated, infinite nuclear matter and is
used in the calculations of the properties of the astronomical objects as, for
example, neutron stars or supernovae [2]. In such large objects, the surface
effect in the description of the total energy is negligible. For small objects,
such as atomic nuclei, the energy due to interactions at the surface, cannot
be ignored and in such case the system energy must have additional contri-
butions, corresponding to this additional surface energy. In the presented
approach, the surface energy is related to the dispersion of the energy den-
sity in the nucleon’s environment and also to the increase of the diffuseness
of the nucleon momentum caused by nucleon location at the surface (see
in [3]).

In the interaction description which is applied in the model presented
here, one can distinguish ingredients related to the volume, surface and
Coulomb energy, which are the essence of the description used in the LDM
model.

In our approach, all the mentioned types of energy are functionals ex-
pressed by integrals determined by the distribution of nuclear matter. Since
these densities are here uniquely determined by the position and other pa-
rameters of wave packets (spin, isospin and variance), the description can
be interpreted as the Microscopic LDM model (MLDM).
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As we know, the equation of state of nuclear matter is still not well
established and its determination is one of the most important tasks of the
experimental and theoretical nuclear physics. In the presented approach, the
equation of state plays a very important role and in this way the described
model has an opportunity to contribute in the EOS investigation. It is
also important to use a convenient form of the EOS suitable for efficient
description of the heavy ion reactions as well as for the description of the
ground state properties of the reacting nuclei. This form of the EOS should
fulfil the following requirements:

1. The compression part of the equation of state, in the neighbourhood
of saturation density ρ0 (where ρ0 is the density of the matter which
is equilibrated in isospin and spin, and for which the density of energy
reaches a minimum) can be written as a sum of the two types of energy:

— e0: energy related to symmetric nuclear matter (SNM);
— esym: energy produced by the nuclear matter symmetry disorders,

which is called a symmetry energy (see Section 2).

It turns out that adopting certain simplifying assumptions (see Ap-
pendix A), these energies can be expressed as a function of the total
density ρ. The expectation which is in line with a mean field the-
ory (e.g. with the Skyrme–Hartree–Fock model) determine the zero
energy density in the case where density of matter tends to zero (it
is in contrast with some other models like, for instance, an idealized
alpha-mater picture [4]).

2. For the saturation density, we require:

— a defined value of the energy density;
— a defined values of the first and the second derivatives (slope and

curvature) of the energy density (defined by EOS);
— and for density ρ→ 0 the additional requirement is e(ρ)→ 0;

then the simplest form of a polynomial, which can meet all these re-
quirements can be expressed as

e = αρ+ βρ2 + γρ3 . (1)

The method of determining the coefficients alpha, beta, gamma is given
in Section 2 and Appendix A. As it is shown [3], form (1) is suitable for
different theoretical descriptions of the EOS. It is also worth noting that
this form of the EOS allows us to find the respective mean energy values
in an analytical way (in the case when the density is expressed by partial
density, taken as the Gaussian functions).
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A modified equation of state in a form suitable for the MLDM calcula-
tions is defined in the next section. In the third section, we will present the
application of the proposed form of the EOS together with an additional
surface energy term in the MLDM model. The obtained preliminary results
in this model are related to the properties of nuclei in their ground states
and are presented in Section 4. Since in our description we use EOS, in
which energy symmetry is associated with spin and isospin asymmetry (see
the next section), the geometric structure defined by the position of the cen-
tres of the wave packets can be interpreted as clusters. For the nuclei with
even and equal number of neutrons and protons, these clusters appear as
alpha particles. In Section 5 we present such alpha structures, which appear
in model calculations for light nuclei. In the last chapter, conclusions and
future plans are presented.

2. An equation of state given by the third-degree polynomials

The concept of the EOS of the nuclear matter in the case of two-compo-
nent proton–neutron gas has been discussed in many articles. This equation
as well as a form based on the use of of the third-degree polynomials is
described in [3] and works cited therein. In the next section, we present
the ground state properties of nuclei which are obtained by the microscopic,
density-functional approach. The EOS plays a key role in this approach.

This model is designed to explore the dependence of the dynamics on
wave packets, isospin and spin of nucleons, which these packets represent.
By isospin dependence, we mean the dependence on the charge of the nucleon
(third component of the isospin vector).

If the isospins, spins and variances of wave packets are variables affecting
the mutual interaction of nucleons, then appropriate equations of state must
describe a gas consisting of four components:

— protons with spin up — density ρp↑;

— protons with spin down — density ρp↓;

— neutrons with spin up — density ρn↑;

— neutrons with spin down — density ρn↓.

In our considerations, by ‘nucleons with spin up’ or ‘nucleons with spin
down’ we mean nucleons having spin projections ‘up’ or ‘down’ on the chosen
quantization axis. Now the EOS can be formally written

e = e (ρp↑, ρp↓, ρn↑, ρn↓) . (2)
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According to symmetries characterizing the nuclear interaction, the system
energy is conserved during mutual exchange of neutrons and protons, and
also when changing projections of the spin of all particles to the opposite
projections. To allow us to use these symmetries, we define new coordinates:

ξ =
ρ− ρ0
ρ0

, (3)

δ =
ρn − ρp

ρ
, (4)

ηn =
ρn↑ − ρn↓

ρ
, (5)

ηp =
ρp↑ − ρp↓

ρ
, (6)

where ρ is the total nuclear matter density, and ρ0 is the density of the
isospin and spin equal to zero matter at saturation. We find that during
the above-mentioned operation (mutual conversion of neutrons into protons
and the change of spin projections of all nucleon) the sign of the coordinates:
neutron–proton asymmetry δ and spin asymmetry ηn and ηp are respectively
changed. Therefore, in order to assure energy conservation, in the expression
which defines the system energy, quantities δ, ηn and ηp can occur only as
products with the respective even number of factors. Using these symmetries
one can show (see Appendix A) that the equation of state can be written
with the components having an extended form of symmetry energy:

e = e00 +
K0

18
ξ2

+δ2
(
eI0 +

LI
3
ξ +

KI

18
ξ2
)

+
(
η2n + η2p

)(
eii0 +

Lii
3
ξ +

Kii

18
ξ2
)

+2ηnηp

(
eij0 +

Lij
3
ξ +

Kij

18
ξ2
)
. (7)

The first two lines in the sum (7) represent a well-known form of the
equation of state. The first line describes the matter in a balanced system
(zero isospin and spin), where K0 is the coefficient of compressibility of the
nuclear matter and the second one describes the isospin interaction

eI = eI0 +
LI
3
ξ +

KI

18
ξ2 (8)

which is called the symmetry energy for which eI0 is the Wigner constant,
and the coefficients LI and KI are the slope and curvature respectively.
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In equation (7), by analogy to the isospin symmetry energy, one can
distinguish the spin symmetry energies for neutrons and protons separately

eii = eii0 +
Lii
3
ξ +

Kii

18
ξ2 , (9)

and energy

eij = eij0 +
Lij
3
ξ +

Kij

18
ξ2 (10)

for the mutual, spin interaction of protons and neutrons. The expansion
coefficients: eii0, Lii and Kii, (constant slope and curvature) with indices ii,
describe the energy related to the proton or neutron gas, while the respective
indices ij indicate that the symmetry energy refers to the mutual interaction
of protons and neutrons.

All types of the symmetry energy describe the influence of the spin
and isospin polarization of the matter on the average energy of the nu-
cleon (EOS). According to the observations presented in the introduction,
we assume that the energy associated with the SNM as well as all types of
symmetry energy should disappear as the density of matter tends to zero.
Therefore, to ensure zero values for all energies occurring in equation (7) at
ρ = 0 and to get the proper slope and curvature of the saturation density ρ0,
we use the form of the third-degree polynomial proposed in [3]. As men-
tioned in [3], if the density of matter is described by the sum of Gaussian
distributions, then such a form of the EOS allows us to calculate the average
energy analytically.

Any type of energy found in (7) may be written as

ek = αkρ+ βkρ
2 + γkρ

3 , (11)

and the index k can take values 0, I, ii, and ij. Here, the coefficients
αk, βk, γk are determined by the relations:

αk =

(
3ek0 −

2

3
Lk +

Kk

18

)/
ρ0 , (12)

βk = −
(

3ek0 − Lk +
Kk

9

)/
ρ20 , (13)

γk =

(
ek0 −

Lk
3

+
Kk

18

)/
ρ30 . (14)

3. Application of the proposed EOS form to
the MLDM calculations

The proposed MLDM, similarly like in other models [9–11], describe
the time evolution of the wave function represented by the product of M
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Gaussian wave packets, which represent the nucleons forming the system

Φ =

M∏
k=1

kφIkSk
, (15)

kφIkSk
=

1(
2πσ2k(r)

)3/4 exp

(
− (rk − 〈rk〉)2

4σ2k(r)
+
i

~
rk 〈pk〉

)
, (16)

where σ2k(r), 〈rk〉, 〈pk〉, are the width (the position variance of the kth
nucleon) of a Gaussian wave functions, and centres of its position and as-
sociated momentum for each of the M nucleons. Also every partial wave
function (15) has a label Ik = n or Ik = p and Sk =↑ or Sk =↓, informing
us about isospin and spin associated with the given nucleon and determine
the kind of density (ρp↑, ρp↓, ρn↑, ρn↓) to which given wave packet participate.
In our approach, the variables 〈rk〉, 〈pk〉 and σ2k(r) are time-dependent pa-
rameters describing the wave functions. In addition, we assume that with
every wave packet for each of M nucleons, isospin and spin are related and
that they remain fixed during the interaction (in this way, index k inform
us about the parameters of the given nucleon).

Equations of motion of variables 〈rk〉, 〈pk〉 and σ2k(r) are derived using
the time-dependent variational principle (see e.g. [5]) based on the action
minimization. For this purpose, we define the action as

S =

t2∫
t1

L (Φ,Φ∗) dt , (17)

with the Lagrange functional given as

L =

〈
Φ

∣∣∣∣i~ ddt −H
∣∣∣∣Φ〉 =

〈
Φ

∣∣∣∣i~ ddt
∣∣∣∣Φ〉− 〈Φ |H|Φ〉 . (18)

Now, we will concentrate on the determination of the average value of
Hamiltonian 〈Φ |H|Φ〉. As usual, the Hamiltonian can be written as a sum
of the kinetic energy T and the potential interaction V . To determine the
average kinetic energy, we assume that each wave packet has a momentum
dispersion σk(p) around its mean value 〈pk〉, (σk(r)σk(p) = ~/2 is assumed).
Then the average kinetic energy is given by

〈Φ |T |Φ〉 =

k=M∑
k=1

[
〈pk〉

2

2m
+

3σ2k(p)

2m

]
. (19)
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We assume also that the interaction between nucleons can be described by
the potential given in the form

V ({rk} , {σk(r)}) = VN ({rk} , {σk(r)}) + VS ({rk} , {σk(r)})
+VCoul ({rk} , {σk(r)}) , (20)

where VN is the nuclear interaction, VS is the modification of the interaction
induced by changing the density of matter around the nucleon (surface en-
ergy) and VCoul consists of the Coulomb interaction. If the nuclear matter is
characterized by non-zero spin polarization, then there is a magnetic field.
This field can also be generated by the motion of protons. In such a case,
the Hamiltonian should be corrected for the magnetic interaction.

Now, the average value of the Hamiltonian can be expressed by

〈Φ |H|Φ〉 =
k=M∑
k=1

[
〈pk〉

2

2m
+

3σ2k(p)

2m

]
+ 〈Φ |VN|Φ〉+ 〈Φ |VS|Φ〉+ 〈Φ |VCoul|Φ〉+ 〈Φ |M |Φ〉 . (21)

In our further considerations, we ignore magnetic interaction. The crucial
assumption of the present approach is that the energy of the fermionic in-

ternal motion can be described by
3σ2

pk
2m , so the sum

BV =
k=M∑
k=1

3σ2k(p)

2m
+ 〈Φ |VN|Φ〉 =

∫
e(ρ, δ, ηn, ηp)ρ(r) d3r (22)

can be treated as a volume term of binding energy. As we know, the ground
state energy of the nuclear matter is described by the EOS, which consid-
ers the energy density as a sum of the kinetic energy, associated with the
internal fermionic motion, and energy given by the potential interaction.
Therefore, in our approach we do not have to find the appropriate distribu-
tion of the nucleon momenta, provided that a correct description is given by
the selection of appropriate EOS parameters. Such an EOS parametrization
replaces the potential parametrization normally used.

As in [3], the surface energy is defined as

Bsurf = 〈Φ |VS|Φ〉 = s0

i=M∑
i=1

σi(e)

σ2i (r)
, (23)

where in this semi-empirical part s0 is the surface energy coefficient. In this
formula, the variance σk(e) denotes the variance of energy e(ρ, δ, ηn, ηp) with
respect to the probability kρ(r) of finding the kth nucleon
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σk(e) =

[∫
(ēk − e(ρ, δ, ηn, ηp))2 kρ(r)d3r

] 1
2

, (24)

where ēk is the average energy given by

ēk =

∫
e(ρ, δ, ηn, ηp)

kρ(r)d3r . (25)

In Appendix A, we describe the method of calculation used for variance
σk(e) calculations.

Let us discuss briefly the description of the surface energy given by for-
mula (23). In our approach, we consider drops of the nuclear matter shown
in Fig. 1. The density of matter ρ(r) = ρn(r) + ρp(r) is a function of the
distance r, where ρn(r) = ρn↑+ ρn↓ and ρp(r) = ρp↑+ ρp↓. If the kth packet
is in the region of fixed energy e(ρ, δ, ηn, ηp), then its variance σk(e), associ-
ated with this package kρ(r), is equal to zero. If the package lρ(r) is in the
change of the energy, then the variance σl(e) is greater than zero. Accord-
ing to the formula (23), the surface energy associated with the ith packet is
inversely proportional to the uncertainty of location, which means that it is
proportional to the indetermination of the package momentum. Now, the
formula (23) can be understood as follows. The variation of energy σi(e)
(and associated forces) describes the possibility of localization of the ith nu-
cleon in the case of its entering the alternating field. Such a localization
results in an increase of indetermination of the momentum and an increase
of the average kinetic energy associated with the ith package.

  

Fig. 1. An example of the position of the partial density function and associated
energy variance. As one can see for a position close to the center, variance of the
energy (24) vanishes. See the text for more details.
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The last term in (20) is the Coulomb energy (for protons only) and is
given in the form

〈Φ |VCoul|Φ〉 =
1

2

∑
k 6=l

∫
kρ(r)

e2

|r − r′|
lρ(r′)d3rd3r′ . (26)

This integral can be calculated analytically as (see e.g. [6])

e2
∑
k 6=l

erf
(

rkl√
2σkl(r)

)
rkl

, (27)

where rkl = |〈rk〉 − 〈rl〉| and sigma σkl(r) =
√
σ2k(r) + σ2l (r).

The average Hamiltonian can be written in a form which is analogous to
the description given by the LDM

〈Φ |H|Φ〉 =

k=M∑
k=1

〈pk〉
2

2m
+BV ({〈rk〉} , {σk(r)}) +BS ({〈rk〉} , {σk(r)})

+VCoul ({〈rk〉} , {σk(r)}) . (28)

Based on the Euler–Lagrange equations, one can find the corresponding
equations of motion for coordinates 〈pk〉 , 〈rk〉 and σk(r) (see the Euler–
Lagrange equations). This will be described in a forthcoming paper.

Here, as the first test of the new form of the equation of state, based on
the MLDM model, we will try to describe the ground state properties of a
selected set of nuclei. In our very preliminary approach, we will focus on the
binding energies and nuclear charge radii (RMS).

4. The MLDM calculations for describing the ground state
properties of nuclei

In the MLDM model, the ground state of a nucleus is a many-body state
which is an absolute minimum with respect to variations of 〈rk〉 , σk(r). Ad-
ditionally, in the ground state, for every k the average momentum 〈pk〉 = 0,
which means that for MLDM particles will be essentially at rest and the
system corresponds to a solid one. In order to determine the nuclear ground
state wave function, the following procedure of searching the set {〈rk〉 , σk(r)}
is used:
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1. In a limited space, we choose a random position of the wave packet
together with a certain initial variance. In order to accelerate calcula-
tions for even–even nuclei, we can also assume a correlation (mating)
of packets describing nucleons of the same type and differing only in
the direction of the spin projection. In such a case, we assume that
positions of centres and variances of a spin pair are equal.

2. Using a selected set of parameters describing the interaction (type
EOS), we search for such values of these parameters for which the en-
ergy of the system is minimal. One should also be careful to avoid
emerging local minima. Wave functions found in this way are charac-
terized by certain symmetries, which may be helpful in assessing the
resulting minimum. In the next chapter, we will discuss types of sym-
metry, emerging especially for even–even nuclei with an equal numbers
of protons and neutrons.

To use the presented model for calculating the ground state properties of
nuclei, we have to select specific values of parameters describing the equation
of state. For this purpose, a global search for optimal parameter values
should be used. This will be done in the next paper, here we apply only a
very simplified search method based on the following assumptions:

In the first step, we try to determine the ρ0, e00, K0 and s0 parameters.
In our preliminary estimations, we assume that ρ0 = 0.159 nucl/fm3 and
K = 300 MeV, which has to be in an agreement with the experiment and
theoretical calculations. Then, we use the binding energies and RMS radii
for 4He and 12C nuclei to determine e00 and s0 by the trial and error method.
In this way, we obtain e00 = −12.9 MeV and s0 = 0.09 fm2. For these nuclei,
due to the matter gathering in clusters which are equilibrated in spin and
isospin coordinates, corrections arising due to the symmetry energies appear
to be negligibly small. Note that the obtained parameters e00 and s0 differ
from standard values (in particular, the typical value of e00 = −16 MeV).
This is the result of their assessment for very light nuclei. In the future, it
will be necessary to determine these parameters based on a larger database
(the set of energies and radii of the nuclei in their ground states).

In the next step, we use the binding energies and RMS radii of 2H, 3H,
3He, to obtain an estimate of the isospin and spin polarization parameters.
Our rough estimate gives eI0 = 30 MeV, LI = 123 MeV, KI = 500 MeV for
isospin parameters and eii0 = 65 MeV, Lii = 300 MeV, Kii = 300 MeV for
the spin interaction in gas of neutrons (the same parameters for the proton
gas). The mutual spin interaction of protons and neutrons are described by
parameters eij0 = −1 MeV, Lij = 20 MeV, Kij = 300 MeV.

With such parameters, the dependence of energies e0, eI , eii and eij , on
the density are presented in Fig. 2.
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Fig. 2. The dependence on the density of nuclear matter: e0 in an isospin and spin
balanced state, the symmetry energy eI for isospin, the symmetry energy eii for
the spin polarization for proton or neutron matter and the symmetry energy eij
for spin polarization for proton–neutron matter (see the text).

In this simple analysis, the 2H, 3H, 3He, 4He and 12C nuclei can be
treated as generators of the EOS parameters. Reproduced by MLDM model,
binding energies and RMS radii are for these generators arranged together
with the experimental data in Table I.

TABLE I

MLDM calculation results (for preliminary EOS parameters selection). Binding
energies and RMS charge radii of nuclei are compared with the experimental data.

Nuclei Binding Binding RMS RMS
energy energy charge charge
data MLDM radius data radius MLDM
[MeV] [MeV] [fm] [fm]

2H −1.112 −1.104 2.14 2.196
3H −2.827 −2.809 1.759 1.824
3He −2.572 −2.571 1.945 1.974
4He −7.074 −7.062 1.676 1.727
12C −7.68 −7.719 2.47 2.466
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For such choice of the EOS parameters (and the coefficient of surface
tension s0 = 0.09 fm2), we obtain predictions for the binding energies per
nucleon and RMS charge radii which are presented together with the exper-
imental data in Table II.

TABLE II

MLDM calculation results (prediction, preliminary). Binding energies and RMS
charge radii of nuclei are compared with the experimental data.

Nuclei Binding Binding RMS RMS
energy energy charge charge
data MLDM radius data radius MLDM
[MeV] [MeV] [fm] [fm]

16O −7.976 −7.84 2.701 2.613
20Ne −8.032 −7.908 3.005 2.774
24Mg −8.261 −7.953 3.056 2.874
32S −8.493 −7.929 3.261 3.127
36Ar −8.520 −7.896 3.39 3.227
40Ca −8.551 −7.85 3.476 3.336

The data in Table I and Table II should be treated as very preliminary
predictions of the MLDM code based on a roughly chosen equation of state.
For heavier nuclei, one can see quite large deviations of the calculated and
experimental data. In order to achieve greater consistency with the descrip-
tion of the experimental data, all EOS parameters should be re-adjusted.

5. The alpha structure of even–even nuclei with equal number
of protons and neutrons

The concept of nuclear clusters appeared along with the quantum de-
scription of nuclei (and even before the discovery of the neutron in 1932
by James Chadwick). In article [7], many experimental arguments are pre-
sented for the possible existence of alpha clusters, as a matter substructures
in forming nuclei. We present here only two of them, both taken from [8].

(i) The binding energy of even–even nuclei with an equal number of
protons and neutrons appears to be a linear function of the number of bonds
in alpha-particle model, where the number of bonds is equal to: k = 1 for
8Be, k = 3 for 12C, k = 6 for 16O, k = 9 for 20Ne, etc. (see Fig. 9). In the
cited work, this phenomenon is explained on the basis of the proposed form
of the potential interaction between the alpha particles, however there is no
justification for increase in the number of bonds, with an increasing number
of alpha particles.
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(ii) The binding energy of nuclei with an even number of protons Z
and an odd, higher by 1 number of neutrons N = Z + 1. In this case,
we assume that the additional neutron is interacting with multi-centrist
potential defined by the system of the appearing alpha particles. Let the
binding energy for each nuclide X be defined by the function b(X). If the
neutron binding energy in 5He is denoted by B, then we get the following
scheme:

b
(
5He

)
−
[
b
(
4He

)
+ b (n)

]
= B ,

b
(
9Be

)
−
[
b
(
8Be

)
+ b (n)

]
= B + (R+Q) ,

b
(
13C
)
−
[
b
(
12C
)

+ b (n)
]

= B + 2 (R+Q) ,

b
(
17O

)
−
[
b
(
16O

)
+ b (n)

]
= B + 3 (R+Q) , (29)

where constants R and Q are the result of reasoning, which below is pre-
sented in the case of 9Be. If a |ψ1〉 and |ψ2〉 denote the neutron wave
functions corresponding to the interaction with a given alpha particle, then
the two-centre wave function for 8Be can be expressed approximately as a
linear combination of the single center ones (|ψ1〉 and |ψ2〉). Now, the aver-
age binding energy of a neutron, in two-center potential, can be expressed as

b
(
9Be

)
−
[
b
(
8Be

)
+ b (n)

]
=
〈ψ1 + ψ2|T + V1 + V2|ψ1 + ψ2〉

〈ψ1 + ψ2|ψ1 + ψ2〉
, (30)

where in the Hamiltonians H = T +V1 +V2 operator T describes the kinetic
energy and the V1 and V2 are related to the neutron interaction with the
corresponding alpha particle. As can be seen, the following expressions occur
twice in the numerator:

— 〈ψ1|T + V1|ψ1〉 = B, which is the neutron binding energy in 5He, and

— 〈ψ1|V2|ψ1〉 = R, which describes the additional energy associated with
the presence of the second alpha particle, and

— 〈ψ1|H|ψ2〉 = Q as the energy associated with the exchange process.
If the wave functions |ψ1〉 and |ψ2〉 are normalized, then the denominator

in (30) is equal to 2(1+〈ψ1|ψ2〉). Usually, it can be assumed that 〈ψ1|ψ2〉 = S
is small compared to 1, and therefore (30) tends to the corresponding part
of the expression (29).

The systematics presented in Eq. (29) shows an important role of the
alpha structure in nuclei.

The report [7] describes also some of alpha cluster models. Our approach
is based on single nucleons and in this way it is similar to QMD (Quantum
Molecular Dynamics) [9], AMD (Antisymmetric Molecular Dynamics) [10]
and FMD (Fermionic Molecular Dynamics) [11], in which a dynamics is
based on variational principle.
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Since our model includes isospin and spin interactions occurring be-
tween different types of nucleons with densities ρp↑, ρp↓, ρn↑, ρn↓, nucleons
are grouped in order to minimize this additional symmetry energy. As we
know, in the case of fermions this causes the binding of particles into pairs.
For nuclear matter, an additional positive energy is associated with the lack
of isospin balance. To minimize both of these symmetry energies, nucleons
create alpha clusters. This phenomenon is included in our model, so one
can observe the alpha structure in the resulting nuclear matter distribution,
particularly for even–even nuclei with equal proton and neutron numbers.
To show this, we present in Figs. 3–6 results of calculations for nuclei 16O,
24Mg, 36Ar and 40Ca.

x

z
y

projection on the xy plane

16O

Fig. 3. The position and the variance of the wave packet for the nucleons in the
nucleus 16O. In the first column of the table, there are the numbers of groups
of nucleons, which are correlated in the alpha particle. The second column indi-
cates spins and a type of nucleons creating given pairs. The common position and
variance of the two wave packets are presented.

The alpha structures obtained in our calculations are identical with struc-
tures presented in papers [8, 12] up to the silicon and the number of alpha-
alpha bonds are the same as that proposed by [13] (after 16O, there is an
increment of three bonds for each additional alpha particle). Thus, we have
15 bonds for 28Si instead of 16 [8]. The justification for this selection can be
understood from Fig. 7 for alpha–alpha distance distribution.

This distribution presented in Fig. 7, shows that the countable alpha–
alpha bond distances are centred around 3.23 fm up to 3.5 fm. In the case
of 28Si, distances associated with 15 bonds lie below this value and the rest



940 Z. Sosin, J. Kallunkathariyil

projection on the xy plane

24Mg
x

z
y

Fig. 4. The position and the variance of the wave packet for the nucleons in the
nucleus 24Mg. Notation is the same as in Fig. 3.

projection on the xy plane

36Arx

z
y

Fig. 5. The position and the variance of the wave packet for the nucleons in the
nucleus 36Ar. Notation is the same as in Fig. 3.
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Fig. 6. The position and the variance of the wave packet for the nucleons in the
nucleus 40Ca. Notation is the same as in Fig. 3.

Fig. 7. The distribution alpha–alpha inter-particle distance calculated with MLDM
is plotted (up to 60Zn). Most of the countable distances lies below 3.5 fm. For 28Si,
16th bond length is shown.
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has distances larger than 4.0 fm. In our model calculations, a systematic
increase in the binding energy can be observed up to 56Ni. For small Z,
we obtained structures identical to that of Bethe’s prediction [13]. Results
of the model also indicate that the first nucleus for which the change of
systematic increase in the number of bonds with an increase in the number
of alpha particles in the structure is 60Zn (see Fig. 8). This results in a
departure from the systematic increase in energy presented in Fig. 9.

Fig. 8. The alpha particle structure of 60Zn obtained via MLDM calculation (the
systematic shift in the increase of the binding energy starts from this element, see
the text for detail).
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Fig. 9. Total binding energy of nuclei versus number of bonds. From 12C to 56Ni, it
follows the same linear relationship, according to obtained structures. From 60Zn,
the slope has a new linear relationship reflecting change occurring in the nuclei
structures, (see the text for details).

6. Conclusions

A new form of the EOS suitable for the MLDM model calculations is
presented. Preliminary results show that the MLDM model is able to re-
produce the basic properties of atomic nuclei. We see also that MLDM
describes properties of the very light nuclei fairly well. Because light nuclei
are usually populated with the highest probability, this is important for a
correct description of the reaction dynamics.

Another important property of the model, resulting from taking into ac-
count the mutual interaction related to the spin and isospin of nucleons,
is the existence of the alpha structures which is particularly noticeable for
even–even nuclei with equal numbers of protons and neutrons. This forma-
tion of alpha clusters is in line with considerations of the total binding energy
gain associated with the resulting increase in the number of bonds between
alpha particles. It seems that the model can be helpful in explaining the
change of the total binding energy increase occurring close to the nucleus
Z > 28. This creates an additional branch in the scheme of the binding
energy growth as can be seen in the experimental systematics.

A detailed analysis of the binding energy (as energy per nucleon) and
analysis of the nuclear density profiles show that the structures described
herein for certain nuclei may vary. This is due to the existence of various
structures that minimize the energy of the ground state. For some nuclei, the
binding energy differences related to the various structures are sometimes
very small and subtle effects can lead to selection of one of them. This also
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shows that the number of alpha bonds may differ slightly in each individual
case. The analysis of this behaviour as well as restrictions on the appli-
cability of the present simple model will be presented in the forthcoming
paper.

We need to emphasize the very preliminary character of these results. In
order to predict better values of the EOS parameters, further work is needed
and we have to perform a global search in which we will take into account
all available experimental data. It would also help to compare the model
results, describing the basic observables for heavy ion reactions (particularly
for the compressibility factor K0) in the low energy region where the impact
of the nucleon–nucleon collisions can be neglected.

Authors are indebted to Professors L. Jarczyk and R. Płaneta for reading
the manuscript and a fruitful discussion. This work was supported in part
by the Foundation for Polish Science MPD program, co-financed by the
European Union within the European Regional Development Fund and also
by the IN2P3 grant number 08-128.

Appendix A

In this appendix, the form of the EOS is derived. We start from the
expansion of the energy density function and we use the symmetry which
exists in nuclear interactions. According to this symmetry, in the expansion
(up to the 4th order) of the e(ξ, δ, ηn, ηp) around the point: ξ = 0, δ = 0,
ηn = 0, ηp = 0 only the following terms appear:

e = e0 + 1
2eξξξ

2

+δ2
(
1
2eδδ + 1

4eδδSnSnη
2
n + 1

2eδδSnSpηnηp + 1
4eδδSpSpη

2
p + 1

2eξδδξ + 1
4eξξδδξ

2
)

+η2n
(
1
2eηnηn + 1

24eηnηnηnηnη
2
n + 1

4eηnηnηpηpη
2
p + 1

2eξηnηnξ + 1
4eξξηnηnξ

2
)

+η2p
(
1
2eηpηp + 1

24eηpηpηpηpη
2
p + 1

2eξηpηpξ + 1
4eξξηpηpξ

2
)

+ηnηp
(
eηnηp + eξηnηpξ + 1

2eξξηnηpξ
2
)
. (31)

The symbol e with the index constituting one of the variables of the
equation denotes a derivative of the energy density with respect to this
variable. We neglect the dependence on δ4 and for small spin polarization
terms in brackets containing η2n, η2p, ηnηp can be neglected. Finally, one can
write

e = e0 + 1
2eξξξ

2 + δ2
(
1
2eδδ + 1

2eξδδξ + 1
4eξξδδξ

2
)

+η2n
(
1
2eηnηn + 1

2eξηnηnξ + 1
4eξξηnηnξ

2
)

+ η2p
(
1
2eηpηp + 1

2eξηpηpξ + 1
4eξξηpηpξ

2
)

+2ηnηp
(
1
2eηnηp + 1

2eξηnηpξ + 1
4eξξηnηpξ

2
)
. (32)
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Replacing symbols of derivatives eλ... by variables defined in the following
relations:

K0

18
=

1

2
eξξ ,

eI0 =
1

2
eδδ ,

LI
3

=
1

2
eξδδ ,

KI

18
=

1

4
eξξδδ ,

eii0 =
1

2
eηnηn ,

Lii
3

=
1

2
eξηnηn ,

Kii

18
=

1

4
eξξηnηn ,

eij0 =
1

2
eηnηp ,

Lij
3

=
1

2
eξηnηp ,

Kij

18
=

1

4
eξξηnηp (33)

and taking into account the mentioned symmetries of nuclear interactions
(the derivatives

(
eηpηp , eηnηn

)
,
(
eξηpηp , eξηnηn

)
and

(
eξξηpηp , eξξηnηn

)
are

pairwise equal, and this means that the respective symmetry energy as-
sociated with the spin is identical for protons and neutrons), we obtain
equation (7).

Appendix B

In this appendix, we present the method of calculation of the variance of
energy given by the EOS in the neighbourhood of the center of the packet k.
In the first step, we calculate the average energy density of matter at random
points with the distribution of kρ(r)

ēk(k) =

∫
e(ρ, δ, ηn, ηp)

kρ(r)d3r . (34)

If we use the equation of state in the form of an expansion (7) and (11), the
derived term for the isospin part cannot be solved analytically∫

δ2αIρ
kρ(r)d3r = αI

∫ (
ρn − ρp

ρ

)2

ρ kρ(r)d3r

= αI

∫
ρnρn − 2ρnρp + ρpρp

ρ
kρ(r)d3r . (35)

In order to avoid this problem, we can use the following approximations

αI

∫
ρnρn
ρ

kρ(r)d3r ∼= αI
N

A

∫
ρn

kρ(r)d3r , (36)

where N and A are the total number of neutrons and nucleus, respectively.
As we can see, after removing ρ from the denominator, the integral can be
solved analytically. Similarly, we can find the remaining ingredients (35)
(with ρnρp and ρpρp).
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In the next step, we assume that the δ, ηn, ηp are established in the
vicinity of the nucleon k as δ̄(k), η̄n(k), η̄p(k) (we replace them by the cor-
responding average values) and we determine the effective density of ρef (k)
based on the equation

ēk = e
(
ρef (k), δ̄(k), η̄n(k), η̄p(k)

)
. (37)

In further considerations, we replace the set ρef (k), δ̄(k), η̄n(k), η̄p(k) by
ρ̃p↑(k), ρ̃p↓, ρ̃n↑(k), ρ̃n↓(k). To calculate the variance σ2k(e), we develop the
integral expression

σ2k(e) =

∫
(ēk − e(ρp↑, ρp↓, ρn↑, ρn↓))2 kρ(r)d3r (38)

around ρ̃p↑(k), ρ̃p↓, ρ̃n↑(k), ρ̃n↓(k). This allows the analytical calculation
of the considered integral. In our calculations, we limited ourselves to the
first order expansion. So, because e (ρ̃p↑(k), ρ̃p↓(k), ρ̃n↑(k), ρ̃n↓(k)) = ēk this
choice of expansion gives a very simple form of the integrand.
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