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In this work, we build a superlattice Ising model based on periodic tri-
layers consisting of spin particles σ = 1

2 , S = 1 and q = 3
2 placed at square

lattice sites. More precisely, we study the effect of the inter-couplings
Jαβ(α, β = σ, S, q) between the trilayers in the presence of an external mag-
netic field H. We first elaborate the ground state phase diagrams in the
(H,JσS)-plane. We find that the most stable phases are associated with
the triplets (σ, S, q) = ((− 1

2 , 1,
3
2 ), (

1
2 ,−1,−

3
2 ) ( 12 , 1,

3
2 )). For JSq = −1,

three extra stable phases appear. In this case, seven different stable con-
figurations arise. Then, we discuss the magnetic properties using Monte
Carlo simulations. The thermal behaviors of the magnetizations and the
susceptibilities are computed and discussed. For different temperatures,
the magnetic field effect on the total magnetization has been investigated,
leading to the hysteresis loops. Moreover, it has been found that the ef-
fect of the coupling interactions on the total magnetization controls the
magnetic phase type, which can be either ferromagnetic or ferrimagnetic
depending on the values of Jαβ couplings.
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1. Introduction
Over the last few decades, the elaboration of the magnetic materials

has received a remarkable interest due to their high spin polarization con-
sidered as promising candidates for nanotechnology and spintronic applica-
tions [1–3]. Magnetic behaviors of various materials have been extensively
investigated using different techniques including the mean field approxima-
tion (MFA) and Monte Carlo simulation [4, 5], effective-field theory [6],
finite cluster approximation [7], renormalization group [8] and series expan-
sions [9]. On the basis of these activities, many models relaying on planar
superlattice engineering methods have been used to deal with the magnetic
properties of multilayer systems using mean field method and Monte Carlo
simulations [10, 11]. In fact, a particular interest has been devoted to study
bilayer systems using alternating geometry [12].

Alternative activities on such materials have been made. In particular,
the magnetic superlattices of doped materials have been built at nano-scale.
For instance, the GaMnAs material has been obtained by layering GaAs and
using Mn-impurity densities. More precisely, the static critical behavior of
the magnetic material superlattices have been investigated, and the corre-
sponding static critical exponents have been calculated by performing simu-
lation methods [13, 14]. An other example concerns the perovskite LaMnO3

which is considered as the parent of the negative colossal and tunnel magne-
toresistance compounds. This model involves a magnetic structure with an
alternate opposed spin layers [15]. Similar studies based on model Hamilto-
nians have been given in many places. In the framework of the Heisenberg
model, the phase diagrams and the magnetic properties have been discussed
using Monte Carlo simulations [16].

More recently, a special interest has been devoted to study trilayer sys-
tems successfully explored in spintronic device fabrications [17]. It has been
found that one can find nice attractive magnetic properties in hole-doped
Mn/Si trilayers [18]. Other models based on the graphene, relaying on the
honeycomb structure, have been also realized using different approaches in-
cluding numerical calculations [19, 20].

In particular, in one of our previous works using MFA, some magnetic
properties of the trilayer system have been discussed, based on a square
structure proposed in [10]. More precisely, we have computed the reduced
critical temperature and the magnetic properties. However, as sake of com-
pletness and in order to get more accurate results, we perform Monte Carlo
simulations to show the effect of magnetic field on phase diagrams and mag-
netic properties of such system.

The aim of this paper is to contribute to these activities by presenting a
Monte Carlo study of a super-lattice Ising model based on periodic trilayers
consisting of particles with spins S = 1

2 , σ = 1 and q = 3
2 residing on the
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sites of a square lattice. More precisely, we discuss the effect of the coupling
interactions Jαβ(α, β = σ, S, q) between the trilayers in the presence of an
external magnetic field H. We first investigate the ground state phase dia-
grams in the plane (H,JσS). It has been shown that the most stable phases
are associated with the triplets (σ, S, q) = ((−1

2 , 1,
3
2), (

1
2 ,−1,−

3
2) (

1
2 , 1,

3
2)).

Three extra stable phases arise for JSq = −1 producing seven phase re-
gions. Then, we study the corresponding magnetic properties using Monte
Carlo simulations. The thermal behaviors of the magnetizations and the
susceptibilities are calculated and investigated. For different temperatures,
the magnetic field effect on the total magnetization has been discussed. We
compute the hysteresis loops. We show that the effect of the coupling in-
teractions, on the total magnetization, determines the type of the magnetic
phase which can be either ferromagnetic or ferrimagnetic depending on the
values of Jαβ .

2. The model

The model we study here is based on a trilayer superlattice consisting
of Ising spins in the presence of an external magnetic field. It is formed by
periodic trilayers of spins σ = 1

2 , S = 1 and q = 3
2 living on square lattice

sites. For later use, we refer to three layers as σ-layer, S-layer and q-layer,
respectively. The geometry of this model is illustrated in Fig. 1. Its physical
properties can be discussed in terms of the following Hamiltonian

H = −Jσσ
∑
(i,j)

σiσj − JSS
∑
(i,j)

SiSj − Jqq
∑
(i,j)

qiqj

−JσS
∑
(i,j)

σiSj − Jσq
∑
(i,j)

σiqj − JSq
∑
(i,j)

Siqj

−H
∑
i

(σi + Si + qi) . (1)

The notation (i, j) represents a pair of the nearest neighbor superlattice sites.
Jαα(α = σ, S, q) denotes the coupling interactions between the particles
living in the same layer (α-layer). The coupling Jαβ(α, β = σ, S, q) are
associated with the interactions between particles belonging to two different
layers(α-layer and β-layer). H is an external magnetic field which is applied
normally on the layer planes.

Having built the corresponding Hamiltonian, the strategy in the rest of
this paper is to perform Monte Carlo simulations to discuss the magnetic
properties. The most important physical quantities will be calculated and
discussed in the forthcoming sections.
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Fig. 1. The geometry of the trilayer superlattice.

3. Ground state phase diagrams

Before discussing the magnetic properties, we start first by an analyti-
cal examination of the ground state phase diagrams of the model described
by the Hamiltonian (1). It is worth noting that the α-layer consists of L2

spins placed on a superlattice with a square geometrical structure. The
ground state phase diagrams can be obtained by computing and comparing
all possible configuration energies. For the present model, the number of
the possible configurations is (2σ + 1)× (2S + 1)× (2q + 1) = 24. It turns
out that the calculation usually depends on the moduli space parameterized
by the exchange coupling interactions Jαα(α = σ, S, q), Jαβ(α, β = σ, S, q)
and the external magnetic field H. However, the general study is beyond
the scope of the present work, though we will consider particular regions
of the moduli space. In the present study, we fix the values of Jαα = 1,
while we vary the values of the external magnetic field H in terms of JσS
for special values of Jσq = ±1 and JSq = ±1. The positive and the negative
values correspond to ferromagnetic and antiferromagnetic interactions re-
spectively. The corresponding ground state phase diagrams are determined
analytically. In this way, the Hamiltonian (1) can produce four topologies
formed by different phase diagrams. These topologies are classified in terms
of the values of the couple (Jσq, JSq). Namely, the ferro–ferro topology FF,
the antiferro–ferro topology AF, the ferro–antiferro topology FA and the
antiferro–antiferro topology AA. For an organization reason, we list them in
Table I.
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TABLE I

A sketch of different topologies, for JσS = 1.

Topology Jσq JSq

FF 1 1
AF 1 −1
FA −1 1
AA −1 −1

The corresponding phase diagrams are presented in Fig. 2. It follows
from this figure that there are seven stable phases associated with the triplets
(σ, S, q). Only four of them appear in all topologies. These four phases are
given by the following triplets: (−1

2 ,−1,−
3
2), (−

1
2 , 1,

3
2), (

1
2 ,−1,−

3
2) and

(12 , 1,
3
2). The complete picture is shown in Table II.
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Fig. 2. The ground state phase diagrams.
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TABLE II

Different ordering phases associated with each topology.

Topology
Ordering

(
− 1

2
,−1,− 3

2

) (
− 1

2
, 1, 3

2

) (
1
2
,−1,− 3

2

) (
1
2
, 1, 3

2

) (
− 1

2
,−1, 3

2

) (
− 1

2
, 1,− 3

2

) (
1
2
,−1, 3

2

)
phases

FF × × × ×
AF × × × × × × ×
FA × × × ×
AA × × × × × × ×

The FF and FA topologies involve the same four stable phases repre-
sented in Fig. 2 (a) and Fig. 2 (c) respectively. They are associated with
(−1

2 ,−1,−
3
2), (−

1
2 , 1,

3
2), (

1
2 ,−1,−

3
2) and (12 , 1,

3
2). The distribution of these

four stable phases depends on the values of JσS . It follows from Fig. 2 (a)
that for JσS ≥ −2 it appears only two symmetrical phases ((−1

2 , 1,
3
2),

(12 ,−1,−
3
2) (12 , 1,

3
2)), while for JσS ≤ −2, we have the four stable phases.

Similar interpretation can be elaborated for the FA topology. However, the
difference can be seen at the level of the location of the critical points and
the size of the phase regions.

The same phenomena arises in AF and AA topologies shown in Fig. 2 (b)
and Fig. 2 (d) respectively. These topologies have, however, seven stable
phases associated with the triplets (−1

2 ,−1,−
3
2), (−1

2 , 1,
3
2), (12 ,−1,−

3
2),

(12 , 1,
3
2), (−1

2 , 1,
3
2), (−1

2 , 1,
3
2), (12 , 1,

3
2). As the previous topologies, the

distribution of these seven stable phases depends on the values of JσS cou-
plings. The difference between these topologies comes essentially from the
size phases and theirs intersection locations. These two topologies have more
stable phases then they appear to be more interesting from the physical point
of view.

4. Monte Carlo study: results and discussions

In this section, we study the phase diagrams and the magnetic proper-
ties of the proposed model using Monte Carlo simulations. In particular, we
perform a Monte Carlo study to deal with the Hamiltonian (1) associated
with the geometry illustrated in Fig. 1. The analysis will be based on the
boundary periodic conditions, 105 Monte Carlo steps for each spin config-
uration and discarding the first 104 generated configurations. Preliminary
calculations are performed for various system sizes namely L = 16, 24, 32
and 64. In what follows, the system size L will be fixed to 32 spins in each
direction.

Averaging over many configurations, we compute the most important
physical quantities. Indeed, we first calculate the partial and total magne-
tizations per site
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Mσ =
1

L2

〈∑
i

σi

〉
,

MS =
1

L2

〈∑
i

Si

〉
,

Mq =
1

L2

〈∑
i

qi

〉
,

Mt =
1

3
(Mσ +MS +Mq) . (2)

Then, we compute the partial and total magnetic susceptibilities

χσ =
1

kβT

(〈
M2
σ

〉
− 〈Mσ〉2

)
,

χS =
1

kβT

(〈
M2
S

〉
− 〈MS〉2

)
,

χq =
1

kβT

(〈
M2
q

〉
− 〈Mq〉2

)
,

χt =
1

kβT

(〈
M2
t

〉
− 〈Mt〉2

)
, (3)

where T is the absolute temperature. kβ is the Boltzmann constant which
will be fixed to the unit value.

In this Monte Carlo study, we restrict ourselves to the triplet (σ, S, q) =
(12 , 1,

3
2) belonging to the FF topology (Fig. 2 (a)). In Fig. 3 (a), (b), (c), we

plot the thermal behaviors of the partial magnetizations as well as the cor-
responding susceptibilities. It follows that at very low temperature values,
the partial magnetizations reach their maximum values, which is in good
agreement with the ground state phase diagram (see Fig. 2 (a)). Moreover,
the critical temperature corresponds to a peak as it is shown in the suscep-
tibility curves. We expect that the same behavior could appear in the total
magnetization and the susceptibility.

In order to study the effect of the external magnetic field H, we plot
in Fig. 4 the total magnetization in terms of H for specific values of the
temperature (T = 1K, T = 2K, T = 3K and T = 4K). The total curve
magnetization exhibits hysteresis loops. It is found that the increasing of
the magnetic field effect decreases the total magnetization. It is worth not-
ing that this behavior is observed for the above temperatures. When the
temperature increases (decreases), for a fixed value of the external magnetic
field, the total magnetization decreases (increases).
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Fig. 3. The partial magnetizations and susceptibilities as a function of the reduced
temperature.
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Fig. 4. The total magnetization in terms of the external magnetic fieldH for specific
values of the reduced temperature (T = 1, T = 2, T = 3 and T = 4).
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To discuss the effect of the coupling interactions on the system, we
present in Fig. 5 (a), (b), (c) the total magnetization in terms of Jαβ(α, β =
σ, S, q) for specific values of the temperature (T = 1K, T = 2K, T = 3K
and T = 4K). For all temperatures, it is found that the increasing of Jαβ
increases the total magnetization. For a fixed value of Jαβ , the total mag-
netization decreases when one increases the temperature. Comparing the
behavior of the total magnetizations, it is observed that there are two re-
gions: large positive values of Jαβ and large negative values of Jαβ . In the
first region, the ferromagnetic phase (σ, S, q) = (12 , 1,

3
2) is the most stable.

However, in the second region, the most stable magnetic phases depend on
the Jαβ coupling interactions. Indeed, these stable phases can be either
antiferromagnetic for JSq or ferrimagnetic for the remaining ones.
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Fig. 5. The total magnetizations as a function of Jαβ(α, β = σ, S, q) for specific
values of the reduced temperature (T = 1, T = 2, T = 3 and T = 4).
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5. Conclusion

In this paper, the phase diagrams and magnetic properties of trilayer
superlattices have been investigated using Monte Carlo study. The model
is based on a trilayer superlattice consisting of particles with spins σ = 1

2 ,
S = 1 and q = 3

2 , residing on the sites of a square lattice. In particular, we
have investigated the effect of the coupling interactions Jαβ(α, β = σ, S, q)
between the trilayers in the presence of an external field H. We have given
the ground state phase diagrams in the plane (H, JσS). We have shown that
the most stable phases are associated with the triplets (σ, S, q) = ((−1

2 , 1,
3
2),

(12 ,−1,−
3
2) (12 , 1,

3
2)). Three additional configurations arise for JSq = −1.

Then, we have studied the magnetic properties using Monte Carlo simula-
tions. The thermal behaviors of the magnetizations and the susceptibilities
have been calculated and discussed. For different temperatures, the mag-
netic field effect on the total magnetization has been investigated. The
hysteresis loops have been found and discussed. Among others, it has been
revealed that the effect of the coupling interactions, on the total magnetiza-
tion, determines the magnetic phase type which can be either ferromagnetic
or ferrimagnetic depending on the values of Jαβ .

REFERENCES

[1] T. Dietl et al., Science 287, 1019 (2000).
[2] T. Dietl, Nature Mater. 9, 965 (2010).
[3] D. Gatteschi, O. Kahn, J.S. Miller, F. Palacio (Eds.), Magnetic Molecular

Materials, NATO ASI E 198, Plenum (1991).
[4] P. Weiss, J. Phys. Radium 6, 661 (1907); H.E. Stanley, Introduction to Phase

Transitions and Gitical Phenomena, Oxford University Press, 1971;
M. Yeomans, Statistical Mechanics of Phase Transitions, Oxford 1993.

[5] K. Binder, P.C. Hohenberg, Phys. Rev. B9, 2194 (1974); K. Binder,
D.W. Heermann, Monte Carlo Simulation in Statistical Physics: An
Introduction, Springer Series in Solid-state Sciences (2002).

[6] R. Honmura, T. Kaneyoshi, J. Phys. C Solid State Phys. 12, 3979 (1979).
[7] N. Boccara, Phys. Lett. A94, 185 (1983); A. Benyoussef, N. Boccara,

J. Appl. Phys. 55, 1667 (1985).
[8] K.G. Wilson, Phys. Rev. B4, 3184 (1971).
[9] J. Oitmaa, Phys. Lett. A33, 230 (1970).
[10] S. Naji et al., Physica A 399, 106 (2014).
[11] O.D.R. Salmona et al., Phys. Lett. A377, 1991 (2013).
[12] M. El Yadari, L. Bahmad, A. El Kenz, A. Benyoussef, Physica A 392, 673

(2013).

http://dx.doi.org/10.1126/science.287.5455.1019
http://dx.doi.org/10.1038/nmat2898
http://dx.doi.org/10.1103/PhysRevB.9.2194
http://dx.doi.org/10.1088/0022-3719/12/19/016
http://dx.doi.org/10.1016/0375-9601(83)90379-1
http://dx.doi.org/10.1063/1.333436
http://dx.doi.org/10.1103/PhysRevB.4.3184
http://dx.doi.org/10.1016/0375-9601(70)90749-8
http://dx.doi.org/10.1016/j.physa.2013.12.042
http://dx.doi.org/10.1016/j.physleta.2013.06.020
http://dx.doi.org/10.1016/j.physa.2012.10.032
http://dx.doi.org/10.1016/j.physa.2012.10.032


Monte Carlo Study of Phase Diagrams and Magnetic Properties of Trilayer . . . 957

[13] A. Koeder et al., Appl. Phys. Lett. 85, 783 (2004)
[arXiv:cond-mat/0308618 [cond-mat.mtrl-sci]].

[14] J. Sadowski et al., arXiv:1201.2166 [cond-mat.mtrl-sci].
[15] F. Moussa et al., Phys. Rev. B54, 15149 (1996).
[16] S. Naji et al., Physica A 391, 3885 (2012).
[17] N.D. Sharma, C.M. Landis, P. Sharma, arXiv:1003.2745

[cond-mat.mes-hall].
[18] L.H. Yang et al., J. Phys. D Appl. Phys. 46, 165502 (2013).
[19] M. Serbyn, D.A. Abanin, Phys. Rev. B87, 115422 (2013).
[20] C.H. Lui et al., Nature Phys. 7, 944 (2011).

http://dx.doi.org/10.1063/1.1771802
http://dx.doi.org/10.1103/PhysRevB.54.15149
http://dx.doi.org/10.1016/j.physa.2012.03.003
http://dx.doi.org/10.1088/0022-3727/46/16/165502
http://dx.doi.org/10.1103/PhysRevB.87.115422
http://dx.doi.org/10.1038/nphys2102

	1 Introduction
	2 The model
	3 Ground state phase diagrams
	4 Monte Carlo study: results and discussions
	5 Conclusion

