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In this paper, we investigate the speed of gravitational waves in the
context of brane-world theory without mirror symmetry or any form of
junction conditions. Using the geometric dark energy, we show that the
speed of the propagation of such waves is greater in the bulk than that
on the brane. So, we expect the 4D Lorentz violation effects manifest
themselves in the gravitational sectors. Finally, we study the effect of the
geometric dark energy on the red shift of gravitational waves.
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1. Introduction

General relativity cannot describe gravity at high enough energies and
must be replaced by quantum gravity theory. The physics responsible for
making a sensible quantum theory of gravity is revealed only at the Planck
scale. This cut-off scale marks the point where our old description of na-
ture breaks down and it is not inconceivable that one of the victims of this
break down is Lorentz invariance. During the last two decades theoretical
studies and experimental observation of Lorentz invariance violation have
received a lot of attention [1–3]. One possible consequence of Lorentz invari-
ance violation is energy dependent photon propagation velocity. The energy
dependence can be constrained by recording the arrival times of photons of
different energies emitted by distant objects at approximately the same time
[4–6]. One feature of Lorentz invariance violation to be considered is that
the speed of light differs from that in special relativity. According to gravity
theories with Lorentz violation, the speed of graviton or the speed of grav-
itational wave differ from that in general relativity (see e.g. [7]). Studying
the speed of gravitational wave in a Lorentz violating gravity theory will
provide different perspectives on quantum gravitational phenomena.
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On the other hand, it is interesting to test the robustness of this sym-
metry at the highest energy scales [8–10]. As usual in high energy physics,
if the scale characterizing new physics is too high then it cannot be reached
directly in collider experiments. In this case, cosmology is the only place
where the effects of new physics can be indirectly observed. Brane-world
models offer a phenomenological way to test some of the novel predictions
and corrections to general relativity that are implied by M-theory. Such
models usually assume that c is a universal constant. For alternative ap-
proaches where the speed of gravity can be different from c in a brane-world
context, see [11–13]. It should be emphasized that the assumption that the
maximal velocity in the bulk coincides with the speed of light on the brane
must not be taken for granted. In this regard, theories with two metric
tensors have been suggested with the associated two sets of “null cones”,
in the bulk and on the brane [14]. This is the manifestation of violation
of the bulk Lorentz invariance by the brane solution. In some brane-world
scenarios, the space-time globally violates 4D Lorentz invariance, leading to
apparent violations of Lorentz invariance from the brane observer’s point of
view due to bulk gravity effects. These effects are restricted to the gravity
sector of the effective theory while the well measured Lorentz invariance of
particle physics remains unaffected in these scenarios [15–17].

In a previous paper [18], we studied Lorentz violation in a brane-world
model with Z2 symmetry through the well known SMS procedure [19]. But in
this work, we study local Lorentz violation in a brane-world scenario without
using the Z2 symmetry, or without postulating any junction condition. Here,
the Friedman’s equation is modified by a geometrical term which is defined
by the extrinsic curvature [20]. In order to evaluate the compatibility of
the resulting cosmology with the observations, it is made an analogy with
the phenomenological XCDM dark energy model. Based on the analysis
of the deceleration parameter, it is found the universe expands in a bulk
with signature (4, 1), compatible with the de Sitter cosmology. Then, we
address the effect of dark energy on the speed of propagation of gravitational
waves in the bulk as well as on the brane. We find a relation between the
maximum velocity in the bulk and the speed of light on the brane. Next,
we compare the red shift experienced by gravitational waves travelling in
the bulk with that of the electromagnetic waves on the brane and show that
they are different. Therefore, if there is a possible detection mechanism in
gravitational wave experiments, we can obtain some information about the
state equation of geometric dark energy.
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2. Field equation

In the usual brane-world scenarios, the space-time is identified with a sin-
gular hypersurface (or 3-brane) embedded in a five-dimensional bulk. Sup-
pose now that the background manifold v̄4 is isometrically embedded in a
pseudo-Riemannian manifold v5 by the map Y : v̄4 → v5 such that

YA,µYB,ν gAB = ¯gµν , YA,µNBgAB = 0 , NANBgAB = ε , (1)

where gAB (ḡµν) is the metric of the bulk (brane) space v5 (v̄4) in arbitrary
coordinate, YA (X µ) is the basis of the bulk (brane) and NA is normal unite
vector, orthogonal to the brane. The perturbation of v̄4 with respect to a
small positive parameter y along the normal unit vector NA is given by

ZA (xα, y) = YA + yNA . (2)

The integrability conditions for the perturbed geometry are the Gauss and
Codazzi equations. The perturbation (2) induces a perturbation on the
metric gµν which can be written as

gµν = ḡµν + Xµν (xα, y) . (3)

In particular, the linear perturbation obtained from the expansion in y is

gµν = ḡµν + yγµν (xα) . (4)

To find the perturbed metric, we follow the same definitions as in the ge-
ometry of surfaces. Consider the embedding equations of the perturbed
geometry written in the particular Gaussian frame defined by the embedded
geometry and the normal unit vector

ZA,µZB,ν gAB = gµν , ZA,µNBgAB = 0 , NANBgAB = ε . (5)

Substituting equation (2) in (5), we may express the perturbed metric in
the Gaussian frame defined by the embedding as

gµν = ḡµν + 2yK̄µν + y2ḡαβK̄µαK̄νβ , (6)

where K̄µν is the extrinsic curvature of the original brane and the metric
of our space-time is obtained at y = 0 (gµν = ḡµν). It can also be obtained
York’s relation for the extrinsic curvature

Kµν = −1

2

∂gµν
∂y

, (7)

when the brane-world gravitational field propagates in the bulk. Now, if
the Friedman–Robertson–Walker (FRW) universe is seen as a brane-world,
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a five-dimensional bulk with constant curvature is sufficient as it does not
require any additional conditions [20]. The constant curvature bulk is char-
acterized by the Riemann tensor

(5)RABCD = k∗ (gACgBD − gADgBC) , (8)

where k∗ is either zero for the flat bulk, or proportional to a positive or
negative bulk cosmological constant respectively, corresponding two possible
signature (4, 1) for the dS5 bulk and (3, 2) for the AdS5 bulk. We take, in
the embedding equation, g55 = ε = ±1. With this assumption the Gauss–
Codazzi equations reduce to

Rαβγδ =
1

ε
(KαγKβδ −KαδKβγ) + k∗(gαγgβδ − gαδgβγ) , (9)

Kα[β;γ] = 0 . (10)

Using the equations above, we can obtain Einstein’s equations directly.
These equations are modified by the presence of the extrinsic curvature

Rµν − 1
2gµνR+ λgµν = −8πGTµν +Qµν , (11)

where λ is the effective cosmological constant in four dimensions, Tµν is
the confined matter energy-momentum tensor and the last term in (11) is
completely geometrical quantity given by

Qµν =
1

ε

(
Kα
µKαν − hKµν −

1

2

(
K2 − h2

)
gµν

)
, (12)

where h = gµνKµν and K2 = KµνKµν . Notice that the quantity Q is
identically conserved in the sense that

Qµν;ν = 0 , (13)

then, there is no exchange of energy between this geometrical correction
and the confined matter. In order to specify a cosmological model, it is
usual to add a condition on the extrinsic curvature, such as the Israel–
Lanczos junction conditions. If we solve the modified Einstein’s equations
on brane without any conditions, we can obtain more general solutions for
these equations which they permit an adjustment with the observational
results.

For the purpose of the embedding of FRW universe in a five-dimensional
bulk with maximal symmetry, it is convenient to parameterize the FRW
metric as

dS2 = −dt2 + a2
[
dr2 + f(r)

(
dθ2 + sin2 θdϕ2

)]
, (14)
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where f(r) = sin r, r, sinh r correspond to k = 1, 0,−1 respectively. There-
fore, since Kµν is diagonal for the FRW metric, (10) is reduced to

Kii,k −KilΓ
l
ik = Kik,i −KklΓ

l
ii ,

Kii,0 −Kii
ȧ

a
= −aȧ

(
δ1i δ

1
i + f2δ2i δ

2
i + f2 sin2 θδ3i δ

3
i

)
K00 , (15)

where the spatial indices in the brane are i, j, k, l = 1, 2, 3. The first equation
for k 6= 1 givesK11,k = 0 so thatK11 is a time function b(t). From the second
equation we obtain K00 = −1

ȧ
d
dt(

b
a). Repeating the same arguments for K22

and K33, we obtain the general solutions for equation (10)

Kij =
b

a2
gij , K00 = −1

ȧ

d

dt

(
b

a

)
. (16)

By using B = ḃ
b and H = ȧ

a , we have

Qij =
1

ε

b2

a4

(
2
B

H
− 1

)
gij , Q00 = −1

ε

3b2

a4
. (17)

Substituting equation (17) in (11), we obtain Friedmann’s equation modified
by the presence of the extrinsic curvature(

ȧ

a

)2

+
k

a2
=

8πG

3
ρ+

λ

3
+

1

ε

b2

a4
. (18)

As can be seen, the correction term with respect to the standard Friedmann
equation is given by components of the extrinsic curvature where b(t) is an
arbitrary function. In the next section, we try to find the dynamical role of
this function.

3. The effects of the geometric dark energy

Using equation (13), we found that Qµν is independently conserved. So,
we can suggest for Qµν a conserved energy-momentum tensor as

Qµν = − 1

8πG
[(ρx + Px)UµUν + Pxgµν ] , Uµ = δ0µ , (19)

where ρx and Px are the geometric energy density and the geometric pres-
sure, respectively. In fact, we consider a practical example in the XCDM
model. Using equation (19) and equation (17), we can obtain

Px = − 1

8πG

1

ε

b2

a4

(
2
B

H
− 1

)
, ρx =

3

8πG

1

ε

b2

a4
. (20)
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Notice that sign (−) in (19) was chosen in accordance with the weak energy
condition such that ρx > 0 and Px < 0 with ε = 1. As the XCDM model,
we can consider a state-like equation for the geometric dark energy fluid

Px = ωxρx , (21)

where ωx may be a function of time. Substituting the expressions of B and
H in equation above, we have the following equation for b(t)

ḃ

b
=

1

2
(1− 3ωx)

ȧ

a
. (22)

Since ωx is not known, we cannot solve the equation above. But if we assume
that ωx is constant with time, we obtain this solution

b(t) = b0

(
a

a0

) 1
2
(1−3ωx)

, (23)

where a0 is the present value of the expansion parameter and b0 is a positive
constant. As we know b0 must not vanish, otherwise all extrinsic curvature
components would vanish, then the brane-world would behave just as a
trivial plane. By replacing equation (23) in (18), the modified Friedmann
equation can be written(

ȧ

a

)2

+
k

a2
=

8πG

3
ρ+

λ

3
+

1

ε

b20a
−3(1+ωx)

a
(1−3ωx)
0

. (24)

As we can see, the modified Friedmann’s equation depends on the signature
of bulk. The different researches show that the present geometrical model
with the de Sitter bulk is consistent with the latest experimental observation
in limit of the weak energy condition. For example, acceleration red shift
for such models are in good agreement with observational data [21]. Also,
using the wealth of available data from the recent measurements, we can
determine limits on the values of ωx in our geometric model. For example,
distance estimates of galaxy clusters from interferometric measurements of
the Sunyaev–Zeldovich effect and X-ray observations along with SNe Ia and
CMB data requires ωx = −1.2+0.11

−0.18 [22, 23].
On the other hand, to obtain the equations of gravitational waves in the

bulk, first we assume that the bulk space is empty. Using equation (6), the
metric of the perturbed brane can be written as follows

gµν = ηµν + ξKµν , (25)
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where ξ is a small parameter. By using the Einstein gauge, the equations of
gravitational wave become

2Kµν = 0 , (26)

since Kµν is related to the conserved energy-momentum tensor Qµν , so we
can conclude these wave are generated by the geometric dark energy.

3.1. The speed of gravitational wave

In this section, we want to obtain a relation between the maximal velocity
of propagation in bulk and on the brane. Let us start by considering the
metric for our 4D universe as

ḡµν = diag
(
−c2b, a(t)2Υij

)
, (27)

with coordinates (t, xi) and the 3-metric Υij on the spatial slices of constant
time. Now, using equations (16) and (23), we have

K̄00 =
b0
(
1+3ωx

2

)
a

1
2
(1−3ωx)

0

a−
3
2
(1+ωx) ,

K̄ii =
b0ḡii

a
1
2
(1−3ωx)

0

a−
3
2
(1+ωx) . (28)

Substituting the above equations in equation (6), we find that the different
4D sections of the bulk in the vicinity of the original brane will have the
metric

gµν = Ω2diag
(
−D2c2b, a(t)2Υij

)
, (29)

where

Ω2 =

[
1 +

b0y

a
1
2
(1−3ωx)

0

a−
3
2
(1+ωx)

]2
,

D =

[
a

1
2
(1−3ωx)

0 − b0y
(
1+3ωx

2

)
a−

3
2
(1+ωx)

a
1
2
(1−3ωx)

0 + b0ya
− 3

2
(1+ωx)

]
. (30)

From (27), we see that the constant cb represents the speed of light on the
original brane, whereas from (29) the speed of propagation of gravitational
waves in this model is Dcb. Since the current observation data show that
ωx < −1, so D is always greater than unity (D > 1). This leads to apparent
violations of Lorentz invariance from the brane observer’s point of view due
to bulk gravity effects, because the maximal velocity in the bulk becomes
more than the speed of light on the brane.
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An interesting analogy exists between the behavior of gravitational waves
propagating into the bulk from the brane and the electromagnetic waves
crossing one medium into another with different indexes of refraction. This
is a reflection of Fermat’s principle where the greater speed achieved by
gravitational waves in the bulk is taken advantage of when such waves bend
slightly into the bulk with the result that they arrive earlier than electro-
magnetic waves, the latter being stuck to the brane. Therefore, gravitational
waves traveling faster than light would be a possibility! These faster than
light signals, however, do not violate causality since the apparent violation
of causality from the brane observer’s point of view is due to the fact that
the region of causal contact is actually bigger than one would naively ex-
pect from the ordinary propagation of light in an expanding universe, with
no closed timelike curves in the 5D spacetime that would make the theory
inconsistent [24].

3.2. The red shift of gravitational wave

As the present day observations of distant objects involve red shifted
spectra, knowing the behavior of the red shift of different waves is necessary
for analyzing data. In this section, we compare the red shift of gravitational
waves in the bulk with that of the electromagnetic waves on brane. In doing
so we consider the usual FLRW line element on the brane with a(t) as scale
factor. Therefore, the red shift of electromagnetic waves on the brane is
obtained by the usual formula

1 + z =
λ

λ0
=

a(t)

a(t0)
, (31)

where λ and λ0 are the detected and emitted wavelengths, respectively. On
the other hand, using equations (29), (30), the red shift of gravitational
waves on brane is given by

1 + z =
λ

λ0
=

√
D(t0)

D(t)

a(t)

a(t0)
. (32)

Now, the ratio of the red shift of the gravitational waves to that of the
electromagnetic waves is

√
D(t0)
D(t) . Therefore, it depends on the functionD(t).

In an expansion universe (as our universe), we can consider a(t0) = na0,
a(t2) = ma0 such that m > n and a0 is the scale factor of early universe.
Using equation (30), we have

D(t0) =

[
a20 − b0y

(
(1+3ωx)

2

)
n−

3
2
(1+ωx)

a20 − b0yn−
3
2
(1+ωx)

]
,
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D(t) =

[
a20 − b0y

(
(1+3ωx)

2

)
m− 3

2
(1+ωx)

a20 − b0ym− 3
2
(1+ωx)

]
, (33)

and

D(t)−D(t0) =
b0a

2
0y
[
1− (1+3ωx)

2

] [
m− 3

2
(1+ωx) − n−

3
2
(1+ωx)

]
[
a20 − b0ym− 3

2
(1+ωx)

] [
a20 − b0yn−

3
2
(1+ωx)

] . (34)

Since m > n, we can obtain D(t)−D(t0) > 0. Then, for the de Sitter bulk
dS5,

√
D(t0)
D(t) is less than unity so the red shift, due to gravitational waves,

is smaller than that of the electromagnetic waves. Since the red shift of
gravitational waves is different from that of the electromagnetic waves, this
issue may have effects on the detection of gravitational waves. For instance,
through the process of finding a correlation between the small scale CMB
polarization fluctuations and the galaxy number density at a given red shift,
one can determine the local quadrupole moments of the CMB at that red
shift. Then, considering these quadrupoles at different patches on the sky
and at different red shifts, one can obtain a map of the quadrupole moments
during the reionization era [25]. A small part of this quadrupole pattern can
be produced by the tensor modes of fluctuations, i.e., gravitational waves.
Using the correlation between galaxy distribution and the CMB polarization
anisotropies, we can constrain the strength of the primordial gravitational
waves which are really important to physicists, see also [26–29]. Since the red
shift of gravitational waves is different from that of electromagnetic waves,
one expects the strength of primordial gravitational waves to be modified.

Another interesting outcome is that if there is a possible detection mech-
anism in gravitational wave experiments, by studying the speed and red shift
of these waves, we can find some information about the state equation of
geometric dark energy.

3.3. A comparison with the SMS formalism

In the spirit of the usual SMS formalism [19], we assume Z2 symmetry
about the brane which considered to be a hypersurface Σ at y = 0. Using
Z2 symmetry, the Israel’s junction conditions are written as

Kµν |Σ+ = −Kµν |Σ− = −εk
2
5

2

[
τµν −

1

3
gµντ

]
. (35)

Then, from the embedding equations, it follows that

(τµν );µ = 0 , (36)
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showing that the energy-momentum tensor τµν is conserved on the brane and
represents the total vacuum plus matter energy-momentum. It is usually
separated in two parts,

τµν = σgµν + Tµν , (37)

where σ is the tension of the brane in 5D, which is interpreted as the vac-
uum energy of the brane world and Tµν represents the energy-momentum
tensor of ordinary matter in 4D. In our previous paper [18], we obtain a
relation between the maximal velocity of propagation in bulk and on the
brane through the SMS formalism [19]. We start by assuming a perfect fluid
configuration on the brane as

Tµν = (ρ+ p)uµuν − pgµν , (38)

where u, ρ and p are the unit velocity, energy density and pressure of the
matter fluid respectively. We also assume a linear isothermal equation of
state for the fluid

p = ωρ , 0 ≤ ω ≤ 1 . (39)

The weak energy condition imposes the restriction ρ ≥ 0 [30]. In that pa-
per, we consider non-tilted homogeneous cosmological models on the brane,
i.e. we assume that the fluid velocity is orthogonal to the hypersurfaces of
homogeneity [31]. Then, using the Israel’s junction condition, we obtain

K̄00 =
εk25 ḡ00

6
[σ − (2 + 3ω) ρ] ,

K̄ii =
εk25 ḡii

3
[σ + ρ] . (40)

Substituting the above equations in equation (6), we find that the different
4D sections of the bulk in the vicinity of the original brane will have the
metric

gµν = Ω2diag
(
−D2c2b, a(t)2Υij

)
, (41)

where

Ω2 =

[
1− εk25

6
y (σ + ρ)

]2
,

D =

[
6− εk25y (σ − (2 + 3ω)ρ)

6− εk25y(σ + ρ)

]
. (42)

From (27), we see that the constant cb represents the speed of light on the
original brane, whereas from (41) the speed of the propagation of gravi-
tational waves on the 4D section of the bulk is Dcb. Now, if the extra
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dimension is space-like (ε = 1), D is always greater than unity (D > 1).
Then, the maximal velocity in the bulk becomes more than the speed of
light on the brane. This leads to apparent violations of Lorentz invariance
from the brane observer’s point of view due to bulk gravity effects. On the
other hand, the ratio of the red shift of the gravitational waves to that of the
electromagnetic waves depends on

√
D(t0)
D(t) . In [18], it is shown that if the

extra dimension is space-like,
√

D(t0)
D(t) is less than unity so the red shift, due

to gravitational waves, is smaller than that of the electromagnetic waves.
As we see, the results are quite matching with the results in the previous
sub-sections.

4. Conclusions

In this paper, we have considered a brane-world scenario where the mod-
ified field equations on the brane were obtained without using the Z2 sym-
metry or any junction condition. We also showed that if bulk is the de Sitter
spacetime, the 4D Lorentz invariance in the gravitational sector is broken
in the sense of having a propagation speed greater than that of the light.
Gauge fields will not feel these effects, but gravitational waves are free to
propagate into the bulk and they will necessarily feel the effects of the vari-
ation of the speed of light along the extra dimension. Based on this scenario
we then showed that the red shift associated with gravitational waves mov-
ing through the bulk is not equal to the red shift of electromagnetic waves
propagating on the brane. Such a difference could be used, in the event
of the detection of gravitational waves, to find some information about the
state equation of geometric dark energy.
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