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The dynamical responses of ferromagnet to the propagating electro-
magnetic field wave passing through it are modelled and studied here by
Monte Carlo simulation in the two-dimensional Ising model. Here, the
electromagnetic wave is linearly polarised in such a way that the direction
of magnetic field is parallel to that of the magnetic spins. The coherent
spin-cluster propagating mode is observed. The time average magnetisa-
tion over the full cycle (time) of the field defines the order parameter of
the dynamic phase transition. Depending on the value of the temperature
and the amplitude of the propagating magnetic field wave, a dynamical
phase transition is observed. The transition is detected by studying the
temperature dependences of the variance of the dynamic order parameter,
the derivative of the dynamic order parameter and the dynamic specific
heat. The phase boundary of the dynamic transitions are drawn for two
different values of the wave length of the propagating magnetic field wave.
The phase boundary is observed to shrink (inward) for shorter wavelength
of the EM wave. The signature of the divergence of the relevant length
scale is observed at the transition point.
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1. Introduction

The dynamical response of Ising ferromagnet to a time dependent mag-
netic field has become an active field of research [1]. The hysteretic responses
and the nonequilibrium dynamic phase transitions are two main points of
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attention. The scaling behaviour [2] of hysteresis loop area with the am-
plitude, frequency of the sinusoidally oscillating magnetic field is the main
outcome of the research. Another interesting aspect is the nonequilibrium
dynamic phase transition which has produced variety of interesting results
and prompted the researchers to take continuous attention in this field. His-
torically, some important observations like (i) divergences of dynamic spe-
cific heat and relaxation time near the transition point [3], (ii) divergence of
the relevant length-scale near the transition point [4], (iii) studies regarding
the existence of tricritical point [5, 6], (iv) the relation with the stochastic
resonance [5] and the hysteretic loss [7] enriched the field and established
that the dynamic transition has similarity to the well-known equilibrium
thermodynamic phase transition. Very recently, a surface dynamic phase
transition [8] has been observed in the kinetic Ising ferromagnet driven by
oscillating magnetic field. The dynamic phase transition was detected also
experimentally [9] in the ultrathin Co film on Cu(001) system by surface
magneto-optic Kerr effect. The direct excitation of propagating spin waves
by focused ultrashort optical pulses have been recently investigated [10].
The transient behaviour of the dynamically ordered phase in uniaxial cobalt
film is also studied experimentally [11].

This dynamic phase transition is also observed in other magnetic models.
The off-axial dynamic phase transition was observed [12] in the anisotropic
classical Heisenberg model and in the XY model [13]. The multiple (surface
and bulk) dynamic transition was observed [14] in the classical Heisenberg
model. The multiple dynamic transition was found [15] also in the Heisen-
berg ferromagnet driven by polarised magnetic field. The dynamic transi-
tion was observed [16] in the kinetic spin-3/2 Blume–Capel model and in
the Blume–Emery–Griffith model [17] by meanfield calculations. The dy-
namic phase transition was studied by the Monte Carlo simulation [18] and
meanfield calculation [19] in the Ising metamagnet.

It may be noted here, that all the studies mentioned so far, were done
by sinusoidally oscillating magnetic field which was uniform over the space
(lattice) at any instant of time. In those studies, the spatio-temporal varia-
tion of applied magnetic field was not considered. One such spatio-temporal
variation of applied magnetic field would be the propagating magnetic field
wave. In reality, if the electromagnetic wave passes through the ferromag-
net, the varying (with space and time) magnetic field coupled with the spin,
will affect the dynamic nature of the system. Here, also dynamic transition
will be observed. Very recently, it has been briefly reported [20] that prop-
agating magnetic field wave would lead to a dynamical phase transition in
the Ising ferromagnet. A pinned phase and a phase of coherent motion of
spin-clusters were observed recently [21] in the random field Ising model,
swept by propagating magnetic field wave. Here, the nonequilibrium dy-
namic phase transition is athermal and tuned by quenched random (field)
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disorder. A rich dynamical phase boundary (with four different phases) was
also drawn. A dynamic symmetry breaking breathing and spreading transi-
tions [22] were also recently found in a ferromagnetic film irradiated by the
spherical electromagnetic wave.

In this paper, the nonequilibrium dynamic phase transition is studied ex-
tensively in the two-dimensional Ising ferromagnet swept by polarised prop-
agating electromagnetic field wave with the Monte Carlo (MC) simulation
and the phase boundary of the dynamical phase transition is drawn. The
paper is organised as follows: The model and the MC simulation technique
are discussed in Sec. 2, the numerical results are reported in Sec. 3 and the
paper ends with a summary, in Sec. 4.

2. Model and simulation

The Hamiltonian (time dependent) representing the two-dimensional
Ising ferromagnet (having uniform nearest neighbour interaction) in pres-
ence of a polarised propagating electromagnetic field wave (having spatio-
temporal variation) can be written as

H(t) = −JΣs(x, y, t)s
(
x′, y′, t

)
−Σh(x, y, t)s(x, y, t) . (1)

The s(x, y, t) represents the Ising spin variable (±1) at lattice site (x, y)
at time t on a square lattice of linear size L. J(> 0) is the ferromagnetic
(taken here as uniform) interaction strength. The summation in the first
term represents the Ising spin–spin interaction and is carried over the nearest
neighbours only. The h(x, y, t) is the value of the magnetic field (at point
(x, y) and at any time t) of the propagating electromagnetic wave. It may
be noted here that the electromagnetic wave is linearly polarised in such a
way that the direction of magnetic field is parallel to that of the spins. For
a propagating magnetic field, wave h(x, y, t) takes the form

h(x, y, t) = h0cos(2πft− 2πy/λ) . (2)

The h0, f and λ represent the amplitude, frequency and the wavelength,
respectively, of the propagating electromagnetic field wave which propagates
along the y-direction. In the present simulation, an L × L square lattice is
considered. The boundary condition, used here, is periodic in both the
(x and y) directions. The initial (t = 0) configuration is chosen as the half
of the total number (selected randomly) of spins are up (s(x, y, t = 0) = +1).
This configuration of spins corresponds to the high temperature disordered
phase. The spins are updated randomly (a site (x, y) is chosen at random)
and spin flip occurs (at temperature T ) according to the Metropolis rate
(W ) [23]

W (s→ −s) = Min [exp (−∆E/kBT ) , 1] , (3)
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where ∆E is the change in energy due to the spin flip and kB is the Boltz-
mann constant. L2 such random updates of spins constitutes the unit time
step here and is called the Monte Carlo step per spin (MCSS). Here, the
value of magnetic field is measured in the unit of J and the temperature is
measured in the unit of J/kB. The dynamical steady state is reached by cool-
ing the system slowly in small steps (δT = 0.02 here) of temperature, from
the high temperature, dynamically disordered configuration. This particular
choice is a compromise between the computational time and the precision
in measuring the transition temperature. The frequency of the propagating
magnetic field wave was taken f = 0.01 throughout the study. The total
length of the simulation is 2× 105 MCSS and first 105 MCSS transient data
were discarded. The data are taken by averaging over 105 MCSS. In some
cases, near the transition points, averaging was done over 2 × 105 MCSS,
after discarding initial 2×105 MCSS. Since the frequency of the propagating
field is f = 0.01, the complete cycle of the field requires 100 MCSS. So, in
105 MCSS, 103 numbers of cycles of the propagating field are present. The
time averaged data over the full cycle (100 MCSS) of the propagating field
are further averaged over 1000 cycles.

3. Results

In this study, a square lattice of size L = 100 is considered. The steady
state dynamical behaviours of the spins are studied here. The amplitude,
frequency and the wavelength of the propagating wave are taken h0 = 0.6,
f = 0.01 and λ = 25 respectively. The magnetic field is propagating along
the y-direction (vertically upward in the graphs). The temperature of the
system is taken T = 1.50. The configuration of the spins, at any instant of
time t = 100100 MCS, are shown in Fig. 1 (a). Here, it is noted that the
clusters of spins are formed in strips and these strips move coherently as time
goes on. The propagation of the spin-strips are clear in Fig. 1 (b), where
the snapshot was taken at instant t = 100125 MCSS. The similar study is
performed at a lower temperature T = 1.26 (with all other parameters of
the propagating field remain same). Here, the spin clusters are observed
to be formed in such shapes which are not like the strips (as observed in
the case of higher temperature T = 1.50, mentioned above). This is shown
in Fig. 1 (c), at any instant t = 100100 MCSS. These irregularly shaped
spin-clusters are observed to propagate (along the direction of propagating
magnetic field), which is clear from Fig. 1 (d) (for t = 100125 MCSS).

To show the propagations of these spin-clusters, the instantaneous line
magnetisation m(y, t) = (

∫
s(x, y, t)dx/L) was plotted against y at any par-

ticular instant t = 100100 MCSS. This is shown in Fig. 2 (a) (compare with
Fig. 1 (a)). The periodic variation ofm(y, t) along y-direction is found. This
was observed to propagate, see Fig. 2 (b) and compare with Fig. 1 (b) when
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(a) (b)

(c) (d)

Fig. 1. The motion of spin-clusters of down spins (shown by black dots), swept
by propagating magnetic field wave, for different values of (a) t = 100100 MCSS,
T = 1.5 and h0 = 0.6, (b) t = 100125 MCSS, T = 1.5 and h0 = 0.6, (c) t = 100100

MCSS, T = 1.26 and h0 = 0.6, (d) t = 100125 MCSS, T = 1.26 and h0 = 0.6.

shown at different time t = 100125 MCSS. It may be noted here that the line
magnetisation is periodic (with y) at any instant of time t. This is also peri-
odic in time t at any position y. The oscillation is symmetric aboutm(y) = 0
line (for higher temperature T = 1.50). Here, the time average magnetisa-
tion over a full cycle of the propagating field is Q = f

L

∫ ∫
m(y, t)dydt and

becomes zero (due to symmetric oscillation about m(y) = 0 line). This
corresponds to a dynamically symmetric phase.

Now, for lower temperature T = 1.26, the spatio-temporal periodicity of
the line magnetisation is lost. The symmetric-oscillation (about m(y) = 0
line) is lost here. This corresponds to a dynamically symmetry-broken phase.
As a consequence, the time averaged magnetisation over a full cycle of the
propagating field becomes nonzero. These are shown in Fig. 2 (c) and
Fig. 2 (d) (may be compared with Fig. 1 (c) and Fig. 1 (d), respectively).
However, in this case the spin-clusters were observed to propagate . So, as
the temperature decreases, Q becomes nonzero (lower temperature) from a
zero value (higher temperature). This Q defines the order parameter of the
dynamic phase transition.
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Fig. 2. The propagation of field (•) and the line magnetisation (∗) for various values
of (a) t = 100100 MCSS, T = 1.5 and h0 = 0.6, (b) t = 100125 MCSS, T = 1.5

and h0 = 0.6, (c) t = 100100 MCSS, T = 1.26 and h0 = 0.6, (d) t = 100125 MCSS,
T = 1.26 and h0 = 0.6.

The temperature variations of the dynamic order parameter Q, its vari-
ance 〈(δQ)2〉 are studied. The dynamic energy is E = f

∮
H(t)dt and the

dynamic specific heat is C = dE
dT . The derivatives are calculated numer-

ically by using the three points central difference formula [24]. All these
quantities are calculated statistically over 1000 different samples. The tem-
perature variations of Q, dQ

dT , 〈(δQ)2〉 and C are studied for two different
values of the amplitude of the propagating electromagnetic field wave and
are shown in Fig. 3. As the temperature decreases, Q starts to grow from
zero and near the transition point it becomes nonzero. Near the transition
temperatures, the 〈(δQ)2〉 and C show sharp peak and dQ

dT show a sharp
dip. From the figure, it is also evident that the transition occurs at lower
temperature (Td) for higher values of the field amplitude (h0). In this case,
for λ = 25, the transitions occur at Td = 1.88 and Td = 1.29 for h0 = 0.3
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and h0 = 0.6 respectively. These values of the transition temperatures are
obtained from the position of sharp dips of the dQ

dT and corresponding sharp
peaks of 〈(δQ)2〉 and C shown in Fig. 3. Collecting all the values of the tran-
sition temperatures (Td) (depending on the values of h0), the comprehensive
dynamical phase boundary is obtained.

Fig. 3. The temperature (T ) dependences of the (a) Q, (b) dQ
dT , (c) 〈(δQ)2〉 and

(d) C, for two different values of h0 for propagating magnetic field wave having
f = 0.01 and λ = 25. In each figure, h0 = 0.3(∗) and h0 = 0.6(•).

This dynamic transition temperature (Td) was observed to depend on the
wave length (λ) of the propagating magnetic field wave. The temperature
dependences of Q, dQ

dT , 〈(δQ)2〉 and C are studied and shown in Fig. 4, for
two different values of λ (= 25 and 50). From the figure it is clear that
transition occurs at higher temperature (with same h0) for higher value of
the wavelength (λ). To be precise, for h0 = 0.3, the transitions occur at
Td = 1.88 and Td = 1.94 for λ = 25 and λ = 50, respectively. Here also, the
values of the transition temperatures are obtained from the position of sharp
dips of the dQ

dT and corresponding sharp peaks of 〈(δQ)2〉 and C (shown in
Fig. 4). So, the dynamical phase boundary should shift depending on the
value of λ.

In Fig. 5, the dynamical phase boundaries are drawn for two different
values of λ (= 25 and 50), in the plane formed by Td and h0. It is ob-
served that the boundary shrinks inward (region of lower T and h0) as the
wavelength of the propagating magnetic field decreases.
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Fig. 4. The temperature (T ) dependences of the (a) Q, (b) dQ
dT , (c) 〈(δQ)2〉 and

(d) C, for two different values of λ for propagating magnetic field wave having
f = 0.01 and h0 = 0.3.

Fig. 5. The phase diagram for dynamic phase transition by propagating magnetic
field wave for two different values of wavelengths, λ = 25(•) and λ = 50(∗). Here,
f = 0.01.

The dynamic phase transition, mentioned above, is associated with the
divergences of relevant length scale. For this reason, the L2〈(δQ2)〉 is studied
as the function of temperature T . It is found that the peak of L2〈(δQ)2〉
(observed at Td) increases as L increases. This is shown in Fig. 6. This
result is quite conclusive to say that there exists the diverging length scale
associated with the dynamic phase transition. It may be noted here that
this method was successfully employed [4] to show the diverging length scale,
associated with the dynamic transition, in the Ising ferromagnet driven by
oscillating (but not propagating) magnetic field.



Polarised Electromagnetic Wave Propagation Through the Ferromagnet . . . 1035

Fig. 6. The plot of temperature (T ) versus L2〈(δQ)2〉 for different system sizes (L).
Here, h0 = 0.6, λ = 25 and f = 0.01.

4. Summary

The dynamical responses of a ferromagnet to a polarised electromag-
netic wave are modelled and studied here by the Monte Carlo simulation
in the two-dimensional Ising ferromagnet. In the steady state, the coher-
ent motion (in propagating mode) of spin clusters was observed. The time
average magnetisation over the full cycle of the propagating EM wave is a
measure of the order parameter in the dynamic phase transition observed
here. The dynamic phase transition observed here seems to be of continuous
type and found to be dependent on the amplitude and the wave length of
the propagating polarised EM wave. Hence, a phase boundary (transition
temperature as a function of the amplitude) is drawn for two different values
of the wavelengths of EM wave. The phase boundary is found to shrink (to-
wards the lower values of the temperature and amplitude of field) for shorter
wavelength.

The signature of the divergence of relevant length scale near the tran-
sition is also observed here. This observation, in the case of dynamic tran-
sition, is analogous to that observed in equilibrium critical phenomenon
revealing the growth of critical correlation. It would be interesting to know
the universality class of this dynamic phase transition. To know the univer-
sality class, one has to estimate precisely the critical exponents, through a
systematic study of scaling analysis.
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