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The subdiffusive systems are characterized by the diverging mean resi-
dence time. The escape of a subdiffusive particle from finite intervals cannot
be characterized by the mean exit time. The situation significantly changes
when instead of a single subdiffusive particle there is an ensemble of subdif-
fusive particles. In such a case, if the ensemble of particles is large enough,
the mean minimal first escape time (first exit time of the fastest particle) is
well defined quantity and the minimal first exit time distribution has fast
decaying power-law asymptotics. Consequently, the increase in the number
of particles facilitates escape kinetics and shortenes the system’s lifetime.
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1. Introduction

In the theory of stochastic systems, the escape of a Brownian particle
is a crucial ingredient (element) of many phenomena. Usually, it is as-
sumed that stochastic systems consist of a single particle coupled to the
thermal bath and properties of diffusive motion of this particle are studied.
Here, we continue the line of investigation initiated in [1], where the influ-
ence of coherent multi-particle dynamics on continuous time random walks
[2, 3] was studied. In particular, in [1] it was shown that if an ensemble of
particles moves coherently, the properties of such motion are sensitive to the
actual number of particles. Consequently, we explore how the properties of
the escape from finite interval can be affected by the number of diffusing
particles [4–9].
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Many experiments can be seen as the first exit/escape process [10]. Any
detector records an event if a particle or signal reaches the detector. Con-
sequently, the process of reaching the detector can be seen as the first
exit/hitting problem. In reality, usually more than one particle is released.
In principle, any of released particles can be detected but in many practical
situations the detection of the first (fastest) particle is sufficient to record
an event. The presence of many released particles changes the dynamics of
the first detection significantly. In such realms, the first event (detection)
is observed much faster than in the case when a single particle is released.
More specifically, multi-particle dynamics can result in the finite mean mini-
mal first exit time even in subdiffusive systems which due to trapping events
cannot be characterized by the mean first exit time.

The next section presents the model of escape of a free particle from finite
intervals both in the single particle and many particles regimes. Additionally,
basic information about order statistics is included. In Sec. 3, the results
of numerical simulations are compared with the theoretical predictions, also
in the limit of infinite systems. The paper is closed with summary and
conclusions (Sec. 4).

2. Model and basic concepts

Escape from finite intervals is an example of the process when the multi-
particle dynamics of the same system can be significantly different from
its single particle regime. In order to characterize the escape from finite
intervals, first the single particle system is introduced. Next, the assumption
that there is only one particle in the system is relaxed. Using the concept
of the order statistics and the survival probability it is shown how presence
of many particles can accelerate first escape process and hide anomalous
diffusion.

2.1. Single particle model

A single subdiffusive [3, 11] particle is moving on the finite [−L,L] inter-
val restricted by two absorbing boundaries. In the continuous time random
walk scenario [3, 11], the evolution of the probability density of finding a
particle at time t around x is described by the time-fractional Smoluchowski–
Fokker–Planck equation [3, 11, 12]

∂p(x, t)

∂t
=
σ2

2
0D

1−ν
t

[
∂2

∂x2
p(x, t)

]
, (1)

with the initial condition p(x, 0|0, 0) = p(x, 0) = δ(x), i.e. a particle starts
its motion in the middle of the interval. Due to absorbing boundaries at ±L,
the probability density vanishes at the boundaries, i.e. p(x = ±L, t) = 0. In
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Eq. (1), 0D
1−ν
t represents the Riemann–Liouville fractional time derivative

defined by the relation

0D
1−ν
t f(x, t) =

1

Γ (ν)

d

dt

t∫
0

dt′
f(x, t′)

(t− t′)1−ν
. (2)

In the limit of ν = 1, the fractional time derivative 0D
1−ν
t vanishes and the

time-fractional Smoluchowski–Fokker–Planck equation (1) reduces to the
standard Smoluchowski–Fokker–Planck equation [13].

The solution of Eq. (1) can be constructed by separation of variables
[3, 14] and it reads

p(x, t) =

∞∑
i=1

1

L
sin

[
iπ

2

]
sin

[
iπ(x+ L)

2L

]
Eν

[
− i

2π2σ2

4L2
tν
]
, (3)

where Eν(. . .) is the Mittag–Leffler function [15]

Eν (−λitν) ≡
∞∑
j=0

(−λitν)j

Γ (1 + νj)
, (4)

with λi = i2π2σ2

4L2 (i > 0) being eigenvalues of the Laplace operator on a finite
interval [14]. The Mittag–Leffler function generalizes the standard exponen-
tial function (for ν = 1 the Mittag–Leffler function reduces to the exponen-
tial function). The Mittag–Leffler function interpolates between stretched
exponential (small t)

Eν (−λitν) ∝ exp

[
− λit

ν

Γ (1 + ν)

]
(5)

and a power-law (large t)

Eν (−λitν) ∝ t−ν

λiΓ (1− ν)
(6)

forms, see [3, 16].
As the main characteristics of the escape process the first exit time τ and

its distribution f(τ) are used. From Eq. (1) the first passage time density
f(t) can be calculated [10, 13]

f(t) = − d

dt

L∫
−L

p(x, t)dx = − d

dt
S(t) , (7)

where p(x, t) is the solution of Eq. (1). The survival probability
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S(t) =

L∫
−L

p(x, t)dx (8)

is the probability that at time t a particle is still in the [−L,L] interval.
The survival probability S(t) is the complementary cumulative distribution
function

S(t) = 1−F(t) = 1−
t∫

0

f(u)du (9)

of the first passage time density. From Eq. (3), the survival probability can
be calculated

S(t) =
∞∑
i=1

4

iπ
sin3

[
iπ

2

]
Eν

[
− i

2π2σ2

4L2
tν
]
, (10)

and the first passage time density as f(t) = − d
dtS(t). For ν < 1, the

first passage time density has the power-law asymptotics (f(t) ∝ t−(ν+1)),
while for ν = 1 the Mittag–Leffler function is replaced by the exponential
function and the first passage time density has the exponential asymptotics
determined by the smallest eigenvalue of the Laplace operator. In such a
case, the mean first passage time 〈τ〉 from a bounded (restricted) interval is
finite and equals

〈τ〉 =

∞∫
0

S(t)dt =

∞∫
0

f(t)tdt =
L2

2σ2
. (11)

For ν < 1, due to heavy tailed asymptotics of the first passage time density,
the mean first passage time diverges. Nevertheless, the first passage time
density (as well as the survival probability) is well and uniquely defined.

For a more general initial condition, i.e. p(x, 0) = δ(x−x0), the survival
probability attains the following form

S(t|x0) =
∞∑
i=1

4

iπ
sin

[
iπ(x0 + L)

2L

]
sin2

[
iπ

2

]
Eν

[
− i

2π2σ2

4L2
tν
]
. (12)

Finally, when initial conditions are uniformly distributed over [−L,L] inter-
val, the average survival probability is given by

〈S(t)〉 =
8

π2

∞∑
i=0

1

(2i+ 1)2
Eν

[
−(2i+ 1)2π2σ2

4L2
tν
]
. (13)

In such a situation, due to random initial conditions escape is facilitated,
but the asymptotics remains unaffected.
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2.2. Multi-particle model and order statistics

Single particle dynamics can be easily extended to the multi-particle
dynamics. Now, instead of a single particle moving within the interval, there
is an ensemble of N independent particles which are released at the same
point within a infinitesimally short time. The escape of N particles from
the finite interval is characterized by N first passage times: {τ1, τ2, . . . , τN}.
The quantity of central interest is the minimum of these N first exit times

τ(1) = τmin = min{τ1, τ2, . . . , τN} , (14)

whose probability density can be easily calculated by use of the order statis-
tics [17] or by the properties of the survival probability.

ForN independent, identically distributed random variables Y1, Y2, . . . , YN
the first (smallest) order statistics is defined as

Y(1) = min{Y1, Y2, . . . , YN} .

The cumulative density Fmin
N (y) of the first order statistics Y(1) can be found

by the definition [17]

Fmin
N (y) = Prob(Y(1) 6 y) (15)

= 1− Prob(Y(1) > y)

= 1− Prob(Y1 > y, . . . , YN > y)

= 1− Prob(Y1 > y)× . . .× Prob(YN > y)

= 1− [1−F(y)]N ,

where F(y) is the cumulative density function of Y . Equation (15) can be
rewritten using the survival probabilities

Smin
N (t) = [S(t)]N , (16)

where S(t) and Smin
N (t) = S

(1)
N (t) are survival probabilities for a single par-

ticle and N particles systems respectively.
Equation (16) can be derived by use of the survival probability only.

Smin
N (t) is the probability that all N particles are still in the system ([−L,L]

interval). Since motion of particles is assumed to be independent, the sur-
vival probability Smin

N (t) is the product of the single particle survival prob-
abilities S(t).

The minimal first passage time density fmin
N (t) is the time derivative

of the minimal first passage time cumulative density Fmin
N (t). The mean

minimal first passage time can be calculated as

〈τmin〉N = 〈τ(1)〉N =

∞∫
0

Smin
N (t)dt =

∞∫
0

[S(t)]Ndt . (17)
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The survival probability S(t) is a bounded (1 > S(t) > 0), decreasing func-
tion of time. This implies that Smin

N (t) < S(t) for all t > 0. Consequently,
except the situations when the mean minimal exit time diverges, 〈τmin〉N de-
creases with the increasing number of particles N , see [4–9]. For every value
of the subdiffusion parameter ν, there is such a number of particles N that
the mean minimal exit time becomes finite. More precisely, for Nν > 1,
the mean minimal first passage time becomes finite and for Nν > 2, the
variance of the minimal first passage times is finite.

The N first passage times can be sorted in the non-decreasing order

τmin = τ(1) 6 τ(2) 6 . . . τ(k) 6 . . . τ(N) = τmax . (18)

τ(1) is the time when one (the fastest) particle out of N is absorbed at the
boundary. At τ(k), k particles out of N leave the system. Finally, τ(N) is the
time when last (the slowest) particle escapes from the system, i.e. it is the
time when all particles become absorbed.

Analogously to the first order statistics, it is possible to calculate cumu-
lative density of the maximum (N th (largest) order statistic)

Fmax
N (y) = [F(y)]N , (19)

and kth order statistics

f
(k)
N (y) = Nf(y)

(
N − 1

k − 1

)
[F(y)]k−1 [1−F(y)]N−k , (20)

where f(y) is the probability density function of Y , i.e. f(y) = dF(y)
dy . Since,

we are interested in the dynamics of the fastest particle and minimum has
the “lightest asymptotics”, it is used for further considerations only.

3. Results

The presented results were constructed by the method of subordina-
tion [18] which provides the stochastic representation of solutions of Eq. (1).
The values of the Mittag–Leffler functions were calculated by the Matlab
routine [19]. Moreover, by the appropriate time rescaling results for various
interval half-width L can be transformed into each other. More precisely,
the L half-width case can be transformed into the L0 half-width case by the
time rescaling t→ t′ = t/(L/L0), see Eq. (10). Therefore, without any loss
of generality, in Figs. 1–3 results corresponding to L = 2 are depicted. Ad-
ditional information about parameters of simulations is included in figures’
captions.

Figure 1 presents survival probabilities Smin
N (t) for the subdiffusion pa-

rameter ν = 0.7. Various curves correspond to various number of parti-
cles N = {1, 2, 3, 4, 5}. The solid line shows the theoretical single particle
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survival probability S(t), while the dashed line demonstrates the long time
asymptotics of the survival probability (exactly of the Mittag–Leffler func-
tion). With increasing number of particles N , the decay of the survival
probability Smin

N (t) becomes faster, i.e. tails of the survival probabilities de-
cay as t−Nν .
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Fig. 1. Survival probabilities Smin
N (t) for the subdiffusion parameter ν = 0.7. Re-

sults are constructed by the subordination method with the time step of integration
∆t = 10−3 and averaged over 106 realizations. Various points correspond to various
number of particlesN = {1, 2, 3, 4, 5}. Dashed line shows t−ν long time asymptotics
of a single particle survival probability S(t).

Figures 2 and 3 demonstrate rescaled survival probabilities. More pre-
cisely, instead of survival probabilities Smin

N (t) rescaled curves [Smin
N (t)]1/N

are depicted. Such a rescaling superimpose all curves on top of each other
making them indistinguishable, because for independent particles Smin

N (t) =
[S(t)]N . For every value of ν < 1, the asymptotics of the survival probability
is of the power-law type, i.e. Smin

N (t) ∝ t−Nν . However, the transition point
between stretched exponential and power-law regimes shifts towards longer
times with increasing subdiffusion parameter ν. Finally, for ν = 1 the sys-
tem is Markovian and the survival probability has exponential asymptotics,
see Fig. 3.

In Figs. 2 and 3 solid lines represent the exact S(t) solution, see Eq. (10),
which perfectly agrees with results of numerical simulations. The dashed
lines in Fig. 2 show long time asymptotics of the survival probability which
for ν < 1 is of the power-law type, i.e. Smin

N (t) ∝ t−Nν .
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Fig. 2. Rescaled survival probabilities [Smin
N (t)]1/N for various values of subdiffusion

parameter ν = 0.8 (top left panel), ν = 0.9 (top right panel) ν = 0.95 (bottom
left panel) and ν = 0.99 (bottom right panel). Results are constructed by the
subordination method with the time step of integration ∆t = 10−3 and averaged
over 106 realizations.
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Fig. 3. Rescaled survival probabilities [Smin
N (t)]1/N for ν = 1.0. Results are con-

structed by the stochastic dynamics method with the time step of integration
∆t = 10−4 and averaged over 107 realizations.
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The interesting limiting behavior takes place when simultaneously L→∞
and N → ∞ in such a way that the particle density is preserved, i.e. % =
N/2L = const. Assuming random initial conditions (uniformly sampled over
over [−L,L] interval) for ν = 1, one gets

Smin
∞ (t) = lim

N→∞L→∞
〈S(t)〉N = exp

[
−2σ%√

π
t1/2
]
, (21)

while in the more general case of ν < 1

Smin
∞ (t) = exp

[
− σ%

Γ
(
1 + ν

2

) tν/2] . (22)

These results, up to the factor 2 in the exponent, are exactly the same as for
an immobile target located at the origin surrounded by noninteracting traps
performing random walks in continuous 1D space, see [7–9, 20]. The dif-
ference in the argument of exponent, −σ%tν/2/Γ

(
1 + ν

2

)
versus −2σ%tν/2/

Γ
(
1 + ν

2

)
, comes from the fact that escape of a particle from an 1D in-

terval is equivalent to the motion of mobile traps on a circle with a single
immobile target. Therefore, asymptotically two situations (i) escape from
infinite interval and (ii) absorption at the origin, due to the same stretched
exponential asymptotics, are hardly distinguishable.

The exact stretched exponential asymptotics of Smin
∞ (t) is difficult to

access numerically, because one has to consider very large systems in order
to keep 〈S(t)〉 ∼= 1. Otherwise, the limit survival probability is degenerate
as it only takes values of 0 or 1. Figure 4 shows numerically estimated
survival probabilities for increasing systems’ size with fixed particle density
% = N/2L = 0.1 for ν = 0.8. The solid line represents exact asymptotics,
i.e. Smin

∞ (t) = exp[−atν/2], which nicely agrees with numerical estimates.
Analogously, the stretched exponential asymptotics of the survival prob-

ability Smin
∞ (t) is reached in situations when jump lengths are generated

from more general distributions [9], e.g. α-stable density [21–24]. In such
a case, evolution of the probability density is described by the bi-fractional
Smoluchowski–Fokker–Planck equation [12, 18, 25]

∂p(x, t)

∂t
=
σα

2
0D

1−ν
t

[
∂α

∂|x|α
p(x, t)

]
, (23)

where ∂α

∂|x|α stands for the Riesz–Weil fractional derivative defined via the
Fourier transform

F
[
∂α

∂|x|α
f(x)

]
= −|k|αf̂(x) . (24)
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Fig. 4. Asymptotic survival probability | lnSmin
∞ (t)| for ν = 0.8 and α = 2.0.

Results are averaged over 107 realizations. Solid line represents exact asymptotic
survival probability, i.e. | ln exp[−atν/α]|. Various points correspond to various
system size. The particle density is fixed to % = N/2L = 0.1.

Exact asymptotics has the form Smin
∞ (t) = exp

[
−atν/α

]
, see [9]. The ν/α

exponent is the manifestation of ν/α self-similarity of the underlying random
process [26]. This behavior is very well reproduced in numerical simulations.
Figure 5 shows numerically estimated survival probabilities for increasing
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Fig. 5. Asymptotic survival probability ln |Smin
∞ (t)| for ν = 0.8 and α = 1.5. Results

are averaged over 107 realizations. Solid line represents exact asymptotic survival
probability, i.e. | ln exp[−atν/α]|. Various points correspond to various system size.
The particle density is fixed to % = N/2L = 0.1.
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systems’ size with fixed particle density % = N/2L = 0.1. The solid line
represents exact asymptotic results which perfectly agree with numerical
estimates.

4. Summary and conclusions

A Brownian particle moving in a finite [−L,L] interval escapes from the
domain of motion with the probability 1 and the mean exit time is propor-
tional to L2. The situation drastically changes in the subdiffusive regime.
Here, the particle still exits from interval with probability 1, however the
mean exit time becomes infinite. The divergence of the mean exit time
is the direct consequence of the heavy tailed power-law asymptotics of the
first exit time density. Nevertheless, there are some special conditions when
detection of the escape of subdiffusive particles can be facilitated. Such a sit-
uation happens when two conditions are fulfilled simultaneously: (i) instead
of a single particle the ensemble of N subdiffusive particles is released and
(ii) the escape event is recorded when at least one of particles (the fastest
one) quits the domain of motion. In such a case, the minimal first pas-
sage time distribution for the finite number of particles still has the power
law asymptotics with the exponent dependent on the number of particles
released. More precisely, the exponent characterizing the decay of the min-
imal first passage time distribution increases linearly with the number of
particles. Consequently, the minimal first passage time density despite be-
ing of the power-law type is characterized by the finite mean and the finite
variance. In comparison to the mean, in order to make the variance of the
minimal first passage time finite the larger number of particles is necessary.

Escape of an ensemble of N independent particles from the finite interval
is characterized by N exit times {τ1, . . . , τN}. Among these exit times, there
is the smallest (τmin = τ(1)) and the largest one (τmax = τ(N)). τ(1) informs
when one can expect escape of a first (fastest) particle while τ(N) provides
information when all particles escape from the system (reach the absorbing
boundary). τ(k) characterizes intermediate regime, i.e. it estimates when k
out of N particles can reach the boundary.

Probability density function of maximal escape time has the same asymp-
totics like the exit time distribution. Contrary to the maximal exit time, the
minimal exit time has a distribution with lighter tails than the first passage
time density. Therefore, with the increasing number of particles the mean
minimal first passage time 〈τmin〉N can become finite. The average maximal
exit time 〈τmax〉N is finite when the first exit time 〈τ〉 is finite, otherwise
it diverges. Escape of k out of N particles is in the between regime of es-
cape of first (fastest) and last (slowest) particle. Consequently, it can be
finite or diverge depending on the number of particles k, the total number
of particles N and the first passage time distribution. For scenarios de-
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scribed by Eq. (1) or (23) with ν < 1, the single particle survival probability
has the t−ν asymptotics. Therefore, Smin

N (t) ∝ t−Nν , Smax
N (t) ∝ t−ν , while

S
(k)
N ∝ t−ν(N−k+1). The mean exit time of k out of N particles is finite when
ν(N − k + 1) > 1, the variance of first exit time distributions is finite when
ν(N − k + 1) > 2.

The very different situation takes place for infinite systems. For example,
if the system size and the number of particles are simultaneously increased
in such a way that the particle density is fixed, the survival probability
attains exact asymptotic form which is of the stretched exponential type. In
this limit, the survival probability is the same as the survival probability of
immobile target (located at the origin) surrounded by mobile traps. The only
one difference is in the prefactor in the argument of exponential function,
because escape from interval restricted by two targets is equivalent to the
motion of mobile traps on a circle with one target.

The mean (minimal) first passage time itself cannot be used to discrimi-
nate between normal and anomalous diffusion when more than one particle
is released. Instead of the mean (minimal) exit time, the statistics of exit
times should be studied. Nevertheless, it is necessary to be very careful
because also the minimal first passage time density can be fast decaying
function of time. Therefore, it can be hard to see its power-law asymptotics
especially when a large number of particles is released.

Computer simulations have been performed at the Academic Computer
Center Cyfronet, AGH University of Science and Technology (Kraków,
Poland).
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