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We investigate local and global properties of timelike geodesics in three
static, spherically symmetric spacetimes. These properties are of its own
mathematical relevance and provide a solution of the physical ‘twin para-
dox’ problem. The latter means that we focus our studies on the search
of the longest timelike geodesics between two given points. Due to prob-
lems with solving the geodesic deviation equation, we restrict our inves-
tigations to radial and circular (if exist) geodesics. On these curves we
find general Jacobi vector fields, determine by means of them sequences
of conjugate points and with the aid of the comoving coordinate system
and the spherical symmetry we determine the cut points. These notions
identify segments of radial and circular geodesics which are locally or glob-
ally of maximal length. In de Sitter spacetime all geodesics are globally
maximal. In CAdS and Bertotti–Robinson spacetimes, the radial geodesics
which infinitely many times oscillate between antipodal points in the space
contain infinite number of equally separated conjugate points and there are
no other cut points. Yet in these two spacetimes each outgoing or ingo-
ing radial geodesic which does not cross the centre is globally of maximal
length. Circular geodesics exist only in CAdS spacetime and contain an in-
finite sequence of equally separated conjugate points. The geodesic curves
which intersect the circular ones at these points may either belong to the
two-surface θ = π/2 or lie outside it.
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1. Introduction

We provide detailed calculations concerning the ‘twin paradox’ problem
in three particular static spherically symmetric (SSS) spacetimes. We con-
sider three twins following different worldlines joining common endpoints
and establish which twin gets the oldest one at the reunion. As it is well
known, the problem is of purely geometrical nature and in this setting is
equivalent to the search in differential Lorentzian geometry of the longest
timelike curve joining two given points in the spacetime. The problem ac-
tually consists of two separate problems: a local and a global one. In the
local problem, one considers a bundle of nearby (infinitesimally close) time-
like curves and seeks for the longest one in the bundle. Again, it is well
known that there is a well defined procedure for solving the local problem in
terms of the curvature tensor, which physically determines the behaviour of
geodesic worldlines of nearby free test particles both in four and in a larger
number of spacetime dimensions [1]. A locally maximal timelike curve is
always a geodesic and is determined by solving the geodesic deviation equa-
tion. If the endpoint (the reunion point of the twins’ worldlines) does not
lie in a convex normal neighbourhood of the initial point, the two points
are connected by two or more geodesics of the bundle. This fact is signalled
by the existence of points conjugate to the initial one lying on one of these
geodesics. In other terms, a segment of a geodesic γ joining points P0 and P1

is locally of maximal length between these points if there are no conjugate
points to P0 on γ within the segment. All necessary theorems concerning
Jacobi vector fields (the deviation vectors) and conjugate points are briefly
summarized in [2], where locally maximal worldlines in Schwarzschild metric
were studied.

Yet the global problem is quite different: here, one seeks for the longest
curve among all possible timelike ones joining the given points P0 and P1.
This means that one compares the lengths of curves which besides the end-
points are distant from each other. It is clear that the nonlocal nature of the
problem precludes the existence of any analytic tool to establish if the given
curve is globally maximal: there is no differential equation (playing the role
of the deviation equation) whose solutions might indicate the longest curve.
The globally maximal curve is, again, a segment of a timelike geodesic and
the notion of the conjugate point is replaced by the cut point indicating the
end of this segment. All what is known in global Lorentzian geometry in
this respect are ‘existence theorems’ which provide no effective algorithm
for searching for maximal geodesics. On the contrary, in general, one should
consider the whole set of timelike curves with the given common endpoints
and compare their lengths case by case.
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High symmetry, such as the spherical one, may help in this search, how-
ever, as we shall see below, the spacetimes with the same symmetry consider-
ably differ from each other. Spherical symmetry is singled out since in these
spacetimes it is quite easy to find a transformation from the coordinates in
which the spacetime metric is originally given to the comoving coordinates.
In the latter coordinates, it is straightforward to find out globally maximal
segments for a class of timelike geodesics.

The purpose of the work is twofold: firstly, to find out complete sets
of solutions for Jacobi vector fields for two classes of timelike geodesics,
determine conjugate points on them (being zeros of the Jacobi fields) and, in
this way, show the locally maximal segments of these curves, then establish,
where it is possible, whether these segments (or their pieces) are globally
maximal. Secondly, we interpret physically these geometrical properties of
geodesics in the framework of the twin paradox: which twin’s worldline
makes him the oldest one. The mathematical apparatus applied to deal
with the global maximality problems is described in our previous paper [3]
and we refer the Reader to it.

We emphasize that the search for both locally and globally maximal
geodesics is doubly limited. Firstly, an exact analytic expression for the
geodesic is necessary and since it is a solution to the nonlinear system of
equations, it is available only in a narrow class of spacetimes having suffi-
ciently high symmetries. Secondly, the explicit form of the geodesic is used
in the geodesic deviation equation, which is nonlinear in the tangent vector
to the geodesic making the equation quite complicated. All timelike geodesic
solutions in Schwarzschild spacetime are known and are given in terms of
Weierstrass elliptic functions (see [4] and references therein). One should not
expect that the equation might be effectively solved when these functions
appear in it.

For this reason, we consider only static spherically symmetric space-
times. For their metrics, one has two classes of physically distinguished and
analytically simple timelike geodesics: radial and circular (if exist) ones.
Staticity not only considerably simplifies all calculations, moreover, it al-
lows for a physically meaningful notion of rest1. In an SSS spacetime, we
introduce three twins: twin A remains at rest on a nongeodesic worldline,
twin B revolves on a circular orbit (geodesic or not) around the centre of
spherical symmetry and twin C moves upwards and downwards following a
radial geodesic. The twins’ worldlines emanate from a common initial point
and we study under what conditions they will intersect in the future. We
make detailed calculations in three SSS spacetimes.

1 An unambiguous notion of rest may also be defined in some time-dependent space-
times, e.g. in Robertson–Walker world.
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The paper is organized as follows. In Section 2 we present the geodesic
deviation equation expressed in terms of a suitably chosen vector basis on
the geodesic and its first integrals generated by the Killing vector fields. Sec-
tion 3 deals with the problem of maximal geodesics in de Sitter spacetime,
in Section 4 the same problem is studied in anti-de Sitter space and in Sec-
tion 5 — in Bertotti–Robinson spacetime. Conclusions inferred from these
cases are formulated in Section 6. In a following paper we consider other
spacetimes with high symmetry, first of all the Reissner–Nordström one.

2. Equations for the Jacobi vector fields

Here, we summarize for the Reader’s convenience, the formalism neces-
sary for the search of locally maximal timelike geodesics (cf. [3]). A Jacobi
field on a given timelike geodesic γ with a unit tangent vector field uα(s)
is any vector field Zµ(s) being a solution of the geodesic deviation equation
on γ,

D2

ds2
Zµ = Rµαβγ u

α uβ Zγ (1)

which is orthogonal to the geodesic, Zµ uµ = 0. One replaces the second
absolute derivative D2/ds2 by the ordinary one by expanding Zµ in a basis
consisting of three spacelike orthonormal vector fields eaµ(s), a = 1, 2, 3
on γ, which are orthogonal to γ and are parallelly transported along the
geodesic, i.e. (the signature is (+−−−))

ea
µ ebµ = −δab , ea

µ uµ = 0 ,
D

ds
ea
µ = 0 . (2)

In this basis, Zµ =
∑

a Zaea
µ and the covariant vector equation (1) is re-

duced to three scalar second order ODEs for the scalar coefficients Za(s),

d2

ds2
Za = −eµa Rµαβγ uα uβ

3∑
b=1

Zb eb
γ . (3)

A general Jacobi field depends on 6 integration constants appearing as a
result of solving (3).

Any Killing vector field Kµ of the spacetime generates a first integral of
Eq. (1) of the form [5]

Kµ
D

ds
Zµ − Zµ D

ds
Kµ = const . (4)

By applying the derivative D/ds to the function on the LHS of (4), one
verifies that it is constant along the given geodesic. Also the integral of
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motion may be recast in terms of the scalars Za. To this end, one introduces
a spacetime tetrad eA

µ, A = 0, 1, 2, 3, along γ consisting of the spacelike
vectors eaµ(s) supplemented by e0µ ≡ uµ. The tetrad is orthonormal,

eA
µ eBµ = ηAB = diag(1,−1,−1,−1) (5)

and parallelly transported along γ. Expanding Zµ and Kµ in the tetrad,
Kµ =

∑3
A=0KA eA

µ with the scalars KA defined by Kµ eAµ = ηAAKA

(no summation) and inserting them into (4) one gets

3∑
a=1

(
Za

dKa

ds
− dZa

ds
Ka

)
= const , (6)

whereKa = −Kµ eaµ. If the spacetime admits n linearly independent Killing
vector fields, one gets n integrals of motion (6). In a number of cases, we
find that some of these integrals are trivial, i.e. may be found without the
use of the appropriate Killing fields and have already been employed at the
very beginning of solving the relevant equations, whereas some other first
integrals generated by independent Killing vectors turn out to be dependent.
Nevertheless, in general, the first integrals (6) are essential in the search for
the Jacobi fields.

3. De Sitter spacetime

We use the coordinates in which the spacetime is explicitly static [6–8],

ds2 =
(
1−H2r2

)
dt2 −

(
1−H2r2

)−1
dr2 − r2

(
dθ2 + sin2 θ dφ2

)
, (7)

t ∈ (−∞,∞), 0 ≤ r < 1/H, t and r have dimension of length. This chart
covers only a part of the whole manifold; the spaces t = const are halves of
three-spheres of constant radius 1/H and the spacetime is spherically sym-
metric. The Killing vector field ∂/∂t is timelike in the domain of the chart.
The surface r = 1/H is a coordinate singularity and its part t = −∞ is
a past event horizon for an observer staying at r = 0, whereas the part
t = +∞ is a future event horizon for the observer. The fact that the
spacetime expands has a considerable influence on long journeys and on
the possibility of communication during these journeys [9].

The static twin A remains at r = r0 > 0, θ = π/2, φ = φ0, whereas
the twin B moves on a circular orbit r = r0 in the 2-surface θ = π/2 with
angular velocity ω = dφ/dt. The general geodesic equation for the radial
coordinate

− r̈

1−H2r2
− H2rṙ2

(1−H2r2)2
+H2rṫ2 + rθ̇2 + rφ̇2 sin2 θ = 0 , (8)
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where ḟ ≡ df/ds throughout the paper, shows that circular worldlines
r = r0 > 0 cannot be geodesic curves, what is in concordance with the
expansion of the spacetime. We assume for B that its nongeodesic motion
is φ = ωt+ const with ω = const > 0, then φ̇ = ωṫ.

All the motions take place in the ‘plane’ θ = π/2, hence the universal
integral of motion is

gαβ ẋ
α ẋβ =

(
1−H2r2

)
ṫ2 − ṙ2

1−H2r2
− r2φ̇2 = 1 . (9)

For the circular B’s worldline the integral (9) yields

ṫ2 =
[
1− r20

(
H2 + ω2

)]−1 (10)

and this relation imposes an upper limit on ω,

ω <
1

r0

√
1−H2r20 . (11)

Assuming that (11) holds and denoting

β ≡
[
1− r20

(
H2 + ω2

)]−1/2 (12)

one gets for B

t(s)− t0 = βs and φ− φ0 = ω(t− t0) . (13)

The coordinate time period T of the B’s circulation follows from φ(t0+T ) =
φ0+2π and is T = 2π/ω, hence the proper time measured by B after making
one full circle satisfies T = βsB(T ) and is

sB(T ) =
2π

βω
. (14)

The length of the static A’s worldline in the period T is

sA(T ) =

t0+T∫
t0

√
1−H2r20 dt =

2π

ω

√
1−H2r20 .

Comparison of the lengths

sA(T )

sB(T )
=

(
1−H2r20

1− r20(H2 + ω2)

)1/2

> 1 (15)
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confirms in this case the conjecture in [10, 11] that the moving faster twin
is younger at the reunion than the static twin. In general, however, the
conjecture is false.

The radially moving twin C has φ = φ0 and the timelike Killing vector
Kα = δα0 (normalized to 1 at the coordinate singularity r = 0) generates for
its geodesic worldline the integral of energy Kαpα = E/c, where pα is the
C’s four-momentum. If the twin C has mass m, one defines a dimensionless
constant of energy, k ≡ E/(mc2) and then

ṫ =
k

1−H2r2
. (16)

Inserting (16) into (8) and (9), one gets for a radial geodesic(
1−H2r2

)
r̈ +H2r

(
ṙ2 − k2

)
= 0 (17)

and
ṙ2 = H2r2 + k2 − 1 . (18)

The geodesic C emanates from the initial point P0(t = t0, r = r0 > 0,
φ = φ0). If ṙ(t0) = 0 then k2 = 1 −H2r20 and ṙ 6= 0 at later times implies
r > r0, i.e. the twin C will be eternally receding to infinity and will never
return. We, therefore, assume that at t0 it starts radially inwards with
velocity ṙ(t0) = −u < 0. From (18), u and k are related by

k2 = u2 −H2r20 + 1 . (19)

If k = 1 the centre r = 0 may be asymptotically reached for the proper
time s and coordinate time t tending to infinity since r = r0 exp(−Hs). For
k > 1 the twin crosses the centre and moves outwards at φ = φ0 + π. We,
therefore, assume k < 1. Under this assumption, at t = tm the twin reaches
the smallest distance from the centre, r = rm, where ṙ(tm) = 0 and the
spacetime expansion makes it move outwards; at t = t1 it returns to r = r0
and this is spacetime point P1(t = t1, r = r0, θ = π/2, φ = φ0). Clearly
t1−tm = tm−t0 and the radial journey duration is ∆t = t1−t0 = 2(tm−t0).
The lowest point rm is determined by 0 = H2r2m + k2 − 1, hence

rm =
1

H

√
1− k2 (20)

and one sees from (19) that indeed rm < r0. The integral of energy on C is
confined to the interval

√
1−H2r20 < k < 1.

The geodesic C from P0 to P1, i.e. on both the ingoing and outgoing
segment, may be continuously parametrized as

r = rm cosh η , η ∈ [−α, α] , α > 0 . (21)
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By definition, r(−α) = r(α) = r0, then coshα = r0/rm. Inserting (21) into
(18) and applying (20), one finds dη/ds = H. The length of C is counted
from P0, where η = −α, then η = Hs − α. The dependence t(s) on the
geodesic follows from (16),

t(s) =
k

H

∫
dη

1− (1− k2) cosh2 η
=

1

H
artanh

[
1

k
tanh(Hs− α)

]
+ const .

(22)
This function is well defined since the argument satisfies the inequality
| 1k tanh η| < 1. In fact, | tanh η| ≤ tanhα and one infers from (20) that

1− 1

k2
tanh2 α = 1− r20 − r2m

k2r20
=

1− k2

k2H2r20

(
1−H2r20

)
> 0 .

Inverting the function (21), one gets the length of C from r0 to rm

s(r0, rm) =
α

H
=

1

H
arcosh

r0
rm

(23)

and the length of the geodesic from P0 to P1 expressed in terms of r0 and
k is

sC = 2s(r0, rm) = − 1

H
ln
(
1− k2

)
+

2

H
ln

[
Hr0 +

√
H2r20 + k2 − 1

]
. (24)

Applying properties of hyperbolic functions, one arrives at

t(η)− t0 =
1

H
artanh

(
1

k
tanh η

)
+

1

H
artanh

(
1

k
tanhα

)
=

1

H
artanh

(
k(tanh η + tanhα)

k2 + tanh η tanhα

)
(25)

and the coordinate time of flight from P0 to P1 is

∆t = 2(tm − t0) =
2

H
artanh

(
1

k
tanhα

)
=

1

H
ln
k + tanhα

k − tanhα
, (26)

where
tanhα =

1

Hr0

√
H2r20 + k2 − 1 . (27)

The three twins depart from P0, yet one cannot assume that they will meet
together at P1. A and C will meet at this event whereas, in general, B and
C cannot. We shall discuss the latter problem below, now we compare the
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proper times of A and C. The length of A’s worldline between P0 and P1 is
sA(∆t) = (1−H2r20)1/2∆t and

sC
sA(∆t)

=
(
1−H2r20

)−1/2 [
2 ln(Hr0 +Q)− ln

(
1− k2

)](
ln
kHr0+Q

kHr0−Q

)−1
,

(28)
where Q ≡

√
H2r20 + k2 − 1. A number of numerical examples confirms the

expectation that always sC > sA(∆t), e.g. for Hr0 = 0.99 and k = 0.5 the
ratio is sC/sA = 2.2654.

The twins B and C will meet at P1 if B’s angular velocity is ω = 2π/∆t
for ∆t given in (26) and if ω is smaller than the upper limit (11) what
amounts to

ln
kHr0 +Q

kHr0 −Q
>

2πHr0√
1−H2r20

. (29)

For fixed r0 it is a restriction of the C’s energy k. In the example above,
Hr0 = 0.99 and k = 0.5 the twin B cannot meet C after one revolution.
The two twins will meet at P1 if the energy k is sufficiently close to 1: if
k = 1− ε with 0 < ε� 1 then

ln
kHr0 +Q

kHr0 −Q
≈ ln

(
2Hr0
ε
− 1 +H2r20

1−H2r20

)
and inequality (29) holds.

3.1. Jacobi fields on the timelike geodesics in de Sitter space

Timelike geodesics in de Sitter spacetime have no conjugate points. In
fact, according to Proposition 4.4.2 in [12] (cited as Proposition 4 in [2]) the
necessary conditions are not satisfied: whereas the condition Rµανβ uαuβ =
R
12(gµν−uµuν) 6=0 holds for any timelike geodesic, the expression Rαβuαuβ =

R/4 = −3H2 is always negative. For completeness, we also investigate
the existence of conjugate points on null geodesics. According to Propo-
sition 4.4.5 in [12], the null tangent vector kα should satisfy two neces-
sary conditions: Rαβk

αkβ ≥ 0 and it holds since the scalar is zero and
kµkνk[αRβ]µν[λkσ] 6= 0 at a point and this does not hold since the tensor
vanishes identically. Hence, de Sitter spacetime has no future (nor past)
nonspacelike conjugate points and because the other two assumptions of
Theorem 11.16 in [13] (cited as Theorem 6 in [3]) concerning the spacetime
hold, one concludes that each timelike geodesic is the unique longest (i.e.
maximal) curve connecting its endpoints (it contains no cut points). In other
terms, the endpoint P1 is in a convex normal neighbourhood of an arbitrarily
chosen point P0 (assuming P0 ≺≺ P1).



1060 L.M. Sokołowski, Z.A. Golda

We now determine a general Jacobi field on any timelike geodesic. In de
Sitter space, the geodesic deviation equation (3) for the scalar coefficients
Za(s) is the same for all geodesic curves, whether radial or not, and for any
choice of the spacelike triads on them (providing they satisfy (2)), and has
the form

d2Za
ds2

−H2 Za = 0 . (30)

The generic solution is

Za = Ca e
Hs + C ′a e

−Hs . (31)

Then, the general deviation vector field on arbitrary timelike geodesic van-
ishing at the initial point P0(s = 0) is

Zµ(s) =

3∑
a=1

Ca ea
µ(s) sinhHs (32)

and it is clear that there are no conjugate points on it since the neighbour-
ing geodesics exponentially diverge. The gravitation in this spacetime is
repulsive.

Finally, we explicitly determine the general Jacobi field on a radial time-
like geodesic. For generality, we consider the geodesic followed by the twin C,
i.e. consisting of the ingoing segment and the outgoing one. The vector tan-
gent to C is, from (16), (18) and (21),

uα =

[
k

1−H2r2
, ε
√
H2r2 + k2 − 1, 0, 0

]
=

[
k

1−H2r2m cosh2 η
,
√

1− k2 sinh η, 0, 0

]
(33)

with η = Hs − α and ε = −1 on the ingoing segment, −α ≤ η < 0 and
ε = +1 on the outgoing piece, 0 < η ≤ α. The basis vector triad on C
satisfying (2) is chosen as

e1
µ =

[ √
1− k2

1−H2r2m cosh2 η
sinh η, k, 0, 0

]
,

e2
µ =

[
0, 0,

1

rm cosh η
, 0

]
,

e3
µ =

[
0, 0, 0,

1

rm cosh η

]
, (34)

−α ≤ η ≤ +α. One inserts (34) into (32).



The Local and Global Geometrical Aspects of the Twin Paradox in Static . . . 1061

4. Anti-de Sitter spacetime

Actually, we consider the covering anti-de Sitter (CAdS) spacetime and
use the chart covering the entire manifold and exhibiting its static nature;
the radial coordinate is suitably chosen to our purposes [8, 12, 14]

ds2 =
r2 + a2

a2
dt2 − a2

r2 + a2
dr2 − r2

(
dθ2 + sin2 θ dφ2

)
, (35)

where t ∈ (−∞,+∞), r ∈ [0,∞), t, r and a have dimension of length.
Hypersurfaces of simultaneity t = const are the hyperbolic Lobatchevski
spaces H3. There are no horizons and r = 0 is a coordinate singularity.

The nongeodesic static twin A stays at r = r0 > 0 and φ = φ0 and in a
coordinate time interval T its worldline has length

sA(T ) =

√
1 +

(r0
a

)2
T . (36)

Any geodesic motion takes place in the 2-surface θ = π/2. For a timelike
geodesic, one has the integral of energy E generated by the timelike Killing
field Kα = δα0 (normalized to 1 at r = 0), Kαpα = E/c, then k ≡ E/(mc2)
and

ṫ ≡ dt

ds
=

a2k

r2 + a2
. (37)

The rotational Killing field ∂/∂φ with components ξα = δα3 is normalized
as in Minkowski space and gives rise to conserved angular momentum J =
−ξαpα. Introducing a dimensionless angular momentum h by ah = J/(mc),
one gets

φ̇ =
ah

r2
. (38)

The geodesic equation for the radial coordinate, upon employing (37) and
(38) is (

r2 + a2
)
r̈ − rṙ2 + k2r − h2

r3
(
r2 + a2

)2
= 0 (39)

and the universal integral of motion gαβ ẋαẋβ = 1 reads

ṙ2 = k2 − r2 + a2

a2
− h2

r2
(
r2 + a2

)
. (40)

A circular geodesic at any r = r0 > 0 does exist and is stable [3] and the
constants of motion are, in this case, determined from (39) and (40) by a
and r0 as

k =
r20 + a2

a2
and h =

r20
a2
. (41)
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As the starting point for the three worldlines we choose P0(t0=0, r=r0>0,
θ = π/2, φ = φ0) then the circular geodesic B has the form

t = s and φ− φ0 =
s

a
=
t

a
, (42)

what implies constant angular velocity ω = dφ/dt = 1/a. The period of one
revolution is T = 2πa and the length of geodesic B corresponding to one
circle, i.e. between t = 0 and t = T is sB = T = 2πa. Both T and sB are
the same for all circular geodesic curves independently of the radius r0; it is
a trace of the original anti-de Sitter spacetime where all timelike curves are
closed with a period 2πa. Clearly sA(2πa) > sB.

The third twin C moves on a radial geodesic h = 0 and the equations
describing it are reduced to(

r2 + a2
)
r̈ − rṙ2 + k2r = 0 (43)

and

ṙ2 = k2 − r2 + a2

a2
. (44)

Let at P0 the twin C be initially at rest, ṙ(t = 0) = 0, then its energy k is
given by k2 = r20/a

2 + 1 and its acceleration is directed downwards, r̈(0) =
−r0/a2 < 0, implying falling down. This shows that gravitation in CAdS is
attractive: a body left at rest falls radially to the centre, reaches the centre
r = 0 and flies away in the opposite direction φ = φ0 + π. From (44) it
follows ṙ2 = (r20 − r2)/a2 and this implies r ≤ r0. At the antipodal point
r = r0, φ = φ0+π (denoted below as P3) there is again ṙ = 0 and r̈ = −r0/a2
and the body falls down back and returns to the starting point at the space,
r = r0, φ = φ0. We, therefore, assume that C moves as in Schwarzschild
spacetime: it radially flies away with initial velocity ṙ(0) = u > 0, reaches
a maximum height r = rM at t = tM and falls down back to r0 at the event
P1(t = t1, r = r0, φ = φ0) where t1 = 2tM. The quantities r0, k and u are
now related by

u2 =
1

a2
(
a2k2 − r20 − a2

)
(45)

and the highest point of the trajectory is

r2M = a2
(
k2 − 1

)
. (46)

The condition rM > r0 > 0 implies

k2 >
r20 + a2

a2
. (47)



The Local and Global Geometrical Aspects of the Twin Paradox in Static . . . 1063

One sees from (46) that rM < ∞ for k < ∞ what implies that a mas-
sive particle with finite energy cannot escape to the spatial infinity r = ∞
([8] (paragraph 5.2), [15]). This property of CAdS is in marked contrast to
Schwarzschild spacetime, where the corresponding relationship is [2] rM =
2M/(1− k2) and rM tends to infinity for k → 1 from below.

On the segment P0P1 (and possibly outside it), the radial geodesic C is
conveniently parametrized by an angle η,

r(η) = rM cos2 η ≡ 1
2rM (cos 2η + 1) (48)

in the interval −α/2 ≤ η ≤ +α/2. Then rM = r(0) and the endpoints P0

and P1 correspond to r0 = r(−α/2) = r(+α/2) and the boundary angle α
is determined by

cosα =
2r0
rM
− 1 (49)

and cosα is bounded from above by

cosα =
1

rM
(2r0−rM) =

1

rM

(
2r0−a

√
k2−1

)
<

1

rM

(
2r0−a

√
r20
a2

)
=

r0
rM

,

so that arccos r0
rM

< α < π. The geodesic C consists of the outgoing segment,
η ∈ [−α/2, 0) and the ingoing one, η ∈ (0,+α/2]. The time component of
the vector uα tangent to C is given in (37); its radial component is from (44)
ṙ = ε(k2−r2/a2−1)1/2, where ε = +1 on the outgoing segment and ε = −1
on the ingoing one. Applying (48) in ṙ and noticing that ε(sin2 η)1/2 =
− sin η both on the outgoing and ingoing segment, one finally arrives at

uα ≡ ẋα =

[
k

(k2 − 1) cos4 η + 1
,−
(
k2 − 1

)1/2
sin η

(
1 + cos2 η

)1/2
, 0, 0

]
(50)

valid along the whole geodesic line. The derivative ds/dη along C may be
found from the expression for ds2 on C by inserting dr/dη = −rM sin 2η and
dt/dη = dt/ds×ds/dη and applying (37); the resulting equation is solved by

ds

dη
=

2a| cos η|
(1 + cos2 η)1/2

. (51)

If sin η is a monotonic function in an interval η1 < η < η2 the length of the
corresponding geodesic arc is

s (η1, η2) =

η2∫
η1

ds = 2σa

[
arcsin

(
sin η2√

2

)
− arcsin

(
sin η1√

2

)]
, (52)
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where σ = +1 if cos η > 0 in the interval and σ = −1 for cos η < 0. Then
the length of the geodesic C from P0 to P1 is

sC = s
(
−α

2
,+

α

2

)
= 2s

(
−α

2
, 0
)

= 2sM = 4a arcsin

(
sin α

2√
2

)
= 2a arccos

(
r0
rM

)
, (53)

where r0/rM = r0/(a
√
k2 − 1). To calculate the coordinate time interval

corresponding to a given segment of the radial geodesic one writes dt/dη =
dt/ds× ds/dη and inserts (37), (48) and (51), then

dt

dη
= − 8εak sin 2η

(k2 − 1) (cos 2η + 1)2 + 4

[
4− (cos 2η + 1)2

]−1/2
, (54)

here as above ε = +1 on the outgoing segment (sin 2η < 0) and ε = −1 on
the outgoing segment (sin 2η > 0). One then gets

∆t (η1, η2) =

η2∫
η1

dt

dη
dη = εa [arctan(f(η2))− arctan(f(η1))] , (55)

here

f(η) ≡ k (cos 2η + 1)√
4− (cos 2η + 1)2

.

The time of flight from P0 to P1 is

t1 = ∆t
(
−α

2
,+

α

2

)
= 2tM = πa− 2a arctan

 kr0√
r2M − r20


= 2a arccos

(
kr0

(k2 − 1)1/2
(
a2 + r20

)1/2
)
. (56)

For r0 →∞, one has k2 → (r0/a)2 →∞ and r0/rM → 1, hence sC → 0 and
t1 → 0. CAdS spacetime has the peculiar feature that both the length of
any radial timelike geodesic (emanating from r0 < ∞ and consisting of the
outgoing segment and ingoing one returning to r0) and the coordinate time of
flight on it are bounded from above: t1 < πa and sC < πa; correspondingly
a radial geodesic consisting of one outgoing or ingoing segment from r0
to rM has s(r0, rM) < πa/2. These upper limits correspond to r0 → 0
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independently of rM. Yet the spatial distance (the length of a radial spacelike
geodesic at t = const) from any finite r0 to r =∞ is infinite. Furthermore,
it has been shown that in the 2-surface (t, r) there exist points p and q which
are chronologically related (q lies inside the future null cone of p) and such
that there is no timelike (and necessarily radial) geodesic joining them [13]
(Chap. 6), [15–17].

The twins B and C start from the same place, yet they will not meet
again after making one circle and one radial flight, respectively, since T =
2πa > t1. There are, however, two cases in which they can reunion.

1. Let C make a number of radial flights back and forth in such a way
that at r = r0 it bounces, i.e. rapidly alters its radial velocity from −u to
+u. Its worldline consists of a number of smooth geodesic segments which
are non-smoothly joined at r0, it forms a broken geodesic. Moreover, let the
energy k of C be suitably tuned (for fixed r0) so that

kr0

(k2 − 1)1/2
(
a2 + r20

)1/2 = cos
(m
n
π
)
,

where m and n are positive integers and m < n. Then, duration of n
consecutive radial flights is nt1 = 2mπa = mT , the duration of orbiting m
full circles by B. When they meet at r0 at t = nt1 their proper times are
nsC and msB and their difference is

nsC −msB = 2na

(
arccos

r0
rM
− m

n
π

)
.

We compare the two angles by taking the ratio of their cosines,

cos

(
arccos

r0
rM

)[
cos
(m
n
π
)]−1

=

(
r20 + a2

a2k2

)1/2

< 1

according to (47) and one infers that mπ/n is the smaller angle and nsC −
msB > 0.

2. A physically more interesting opportunity is that the falling down
twin C is not stopped at r0 and is allowed to freely move farther. Then the
whole sequence of events is following:
C starts from r0 at P0(t = 0, η = −α/2), reaches rM at tM and falls down,
comes back to r0 at P1(t= t1, η= +α/2), arrives at the centre at P2(t= t2,
η = π/2), crosses it and radially flies upwards at φ = φ0 + π, passes by the
opposite point r0 at P3(t = t3, η = π−α/2), gets to the highest point rM at
P4(t = t4, η = π) and turns downwards, falls down to r0 at P5(t = t5, η =
π+α/2), comes back to the centre r = 0 at P6(t = t6, η = 3π/2) and finally
returns to the starting place r = r0 and φ = φ0 at P7(t = t7, η = 2π − α/2)
with the initial velocity +u.



1066 L.M. Sokołowski, Z.A. Golda

The staticity of the metric gives rise to the symmetry properties of the
segments of this worldline. Employing (52), (55) and (56), one gets the
coordinate time intervals:

t2 − t1 = t3 − t2 = t6 − t5 = t7 − t6 = a arctan

 kr0√
r2M − r20

 , (57)

t4 − t3 = t5 − t4 = tM (58)

and the lengths of the corresponding geodesic segments,

s(P1P2) = s(P2P3) = s(P5P6) = s(P6P7) =
π

2
a− a arccos

(
r0
rM

)
, (59)

s(P0P1) = sC = 2sM , s(P3P4) = s(P4P5) = sM . (60)

Adding these seven segments, one finds the time duration of the full cycle
and the length of the geodesic,

∆t
(
−α

2
, 2π − α

2

)
= t7 = 2πa , s(P0P7) = 2πa . (61)

Both the circular geodesic B and the radial geodesic C emanating from any
point r0 > 0 reconverge at P7 at the coordinate time T = t7 = 2πa having
the same length 2πa and then at t = 4πa, 6πa, . . . [14, 15] independently of
the initial velocity of C. Once again, we emphasize that this is a trace of
the original anti-de Sitter spacetime which is periodic in time, i.e. events
(t = 0, r, θ, φ) and (t = 2πa, r, θ, φ) are identified. What is even more
interesting, here is that all timelike geodesics emanating from P0 actually
intersect at P3(r = r0, φ = φ0 + π) which is spatially the antipodal point
(with respect to the centre) to P0. In fact, from (57) and (56) one gets
t(P3) = t3 = πa and from (60), (59) and (53) it follows s(P0P3) = πa.
By continuity, it follows that the same holds for the radial geodesic which
falls down from rest at P0, i.e. ṙ(0) = 0. The circular timelike geodesic B
also intersects all the radial geodesics at P3 since from (42) one finds that
for t = t3 = πa its angular coordinate is φ = φ0 + π and sB(π) = πa.
Thus, we have shown analytically that the circular and all radial geodesics
(which cross r = 0) emanating from P0 do meet again after ∆t = πa at the
antipodal point P3 and all have the same length. P3 is the future cut point
of P0 lying on all radial and circular timelike geodesics.

After one radial travel upwards and downwards, the twin C meets A at
P1 and they compare their proper times,

sC
sA(t1)

=
1√

( r0a )2 + 1

arccos
[

r0
a(k2−1)1/2

]
arccos

[
kr0 (k2 − 1)−1/2

(
r20 + a2

)−1/2] . (62)
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It is not easy to analytically prove that sC > sA. We do it numerically and
in Table I we give the ratio sC/sA for r0 = a and 5 values of k; it follows
from (47) that k2 > 2.

TABLE I

The ratio sC/sA for r0 = a as a function of energy k.

k sC/sA
10
9

√
2 1,0331

2 1,0975
5
3

√
2 1,1351

2
√

2 1,1722
10
√

2 1,3547

For rM � r0, i.e. for k →∞ the ratio sC/sA tends to
√

2.

4.1. Conjugate points on timelike geodesics

In CAdS spacetime the necessary conditions Rµανβ uαuβ = 1
a2

(gµν −
uµuν) 6= 0 and Rαβu

αuβ = 3/a2 > 0 imply that each timelike geodesic
contains conjugate points provided it is sufficiently extended. To determine
conjugate points on a given geodesic, one does not need to know the Jacobi
vector fields associated with this geodesic. This is due to the fact that
in CAdS the right-hand side of Eq. (3) is universal (as is the case of de
Sitter spacetime): is independent of the form of the tangent vector uα and
the spacelike basis fields ebµ(s), b = 1, 2, 3 and is determined solely by the
curvature tensor and relations (2). This means, in turn, that the Jacobi
scalars Zb(s) are universal and for all timelike geodesics they satisfy

d2

ds2
Zb +

1

a2
Zb = 0 (63)

with the general solution (the change of sign in Eq. (30) results in replacing
exponential functions by trigonometric ones)

Zb(s) = Cb1 sin
s

a
+ Cb2 cos

s

a
, (64)

Cb1, Cb2 arbitrary constants. Let P0 be any point on the given geodesic
chosen as the initial point (s = 0), one seeks for points conjugate to P0.
The triad components Zb must vanish at P0 and under this condition they
reduce to Zb(s) = Cb1 sin s

a . These scalars have an infinite sequence of zeros
at sn = nπa, n = 1, 2, . . . In other words, each point on each timelike
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geodesic has a point conjugate to it at a geodesic distance ∆s = πa and
the sequence of conjugate points is infinite. Each of the three Jacobi vector
fields corresponding to Zb(s) generates the sequence.

In the case of the circular curve B, the first conjugate point to P0 is
that lying in the middle of the geodesic segment corresponding to one full
revolution, i.e. half way between P0 and P7; it coincides with the first
future cut point P3. Further conjugate points (the second one is P7) at
sn = nπa are identical with the subsequent future cut points. In [3] it was
shown that if a static spherically symmetric spacetime admits stable timelike
circular geodesics, then, in general, there exist on them three distinct infinite
sequences of conjugate points. Due to the maximal symmetry of CAdS
space, one expects that these sequences should coincide and, in fact, applying
appropriate formulae from [3] one easily checks that this is the case.

The same holds for radial timelike geodesics which oscillate between
spatially antipodal highest points r = rM: the subsequent conjugate points
to P0 coincide with their future cut points. Yet the radial geodesic which
does not cross the centre r = 0 is free of conjugate points. CAdS spacetime
is not globally hyperbolic and the theorems quoted as Theorems 2 to 6
in Section 3 of [3] do not apply. By symmetry considerations one expects
that the geodesic C has no future cut points of P0 earlier than P3 and is
maximal on the segment P0P1 whose length is sC < πa and this implies that
sC > sA(t1).

4.2. Jacobi fields on timelike radial and circular geodesics

According to (64) for each timelike geodesic the general Jacobi field has
the same form

Zα(s) =

3∑
b=1

(
Cb1 sin

s

a
+ Cb2 cos

s

a

)
eb
α , (65)

only the basis vectors ebα(s) depend on the given curve.
The basis of spacelike vector fields on the radial geodesic C which sat-

isfy (2) may be chosen as

e1
α =

[
εa

r2 + a2
(
a2
(
k2 − 1

)
− r2

)1/2
, k, 0, 0

]
,

e2
α =

[
0, 0,

1

r
, 0

]
, e3

α =

[
0, 0, 0,

1

r

]
, (66)

where ε = +1 on the outgoing segment (−α/2 ≤ η < 0) and ε = −1 on the
ingoing one (0 < η ≤ π/2) and (48) holds. The component e10 is continuous
at r = rM where it changes its sign since it vanishes there. The Jacobi
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vector field Z2e2
α +Z3e3

α connecting C to a nearby geodesic is directed off
the 2-surface t− r given by θ = π/2 and the field Z1e1

α lies in the surface.
In [3] it was shown that the basis triad of vectors satisfying (2) on the

circular geodesic B has a universal form common to all SSS spacetimes,
depending on four constants, whose values, in turn, depend, for the given
value of r0, on the metric functions g00 and g11. In the present case, these
read

e1
α =

[
− r0(

r20+a2
)1/2 sin

s

a
,

1

a

(
r20+a2

)1/2
cos

s

a
, 0,− 1

ar0

(
r20+a2

)1/2
sin

s

a

]
,

e2
α =

[
0, 0,

1

r0
, 0

]
, e3

α = −a d

ds
e1
α . (67)

All the three Jacobi fields are directed off the 2-surface t− φ where B lies.

5. Bertotti–Robinson spacetime

This spacetime, first discovered by T. Levi-Civita (1917), was indepen-
dently rediscovered by Bertotti [18] and Robinson [19]. The spacetime is ho-
mogeneous and spatially homogeneous, static, spherically symmetric (it ad-
mits a 6-dimensional isometry group) and conformally flat and it is a unique
spacetime generated by a homogeneous non-null electromagnetic field; it
also arises as a near-horizon limit of the non-extremal Reissner–Nordström
black hole [20]. It is geodesically complete and it is conjectured that this
spacetime and the Melvin solution are the only geodesically complete static
Einstein–Maxwell spacetimes [21]; topologically it is AdS2 × S2, thus it is
not globally hyperbolic (for a fuller description see [22] par. 12.3 and [8]
par. 7.1). We investigate it in the chart

ds2 = a2
(
sinh2 x dt2 − dx2 − dθ2 − sin2 θ dφ2

)
, (68)

where a has dimension of length, t ∈ (−∞,+∞), x ∈ (0,∞), all the coordi-
nates are dimensionless and x = 0 is a coordinate singularity. The timelike
Killing vector chosen as Kα = 1

a δ
α
0 becomes null on the hypersurface x = 0

which has topology R1 × S2. The conserved energy for a geodesic mo-
tion generated by Kα is as usual Kαpα = E/c and the standard definition
k = E/(mc2) yields the first integral,

ṫ ≡ dt

ds
=

k

a sinh2 x
, (69)

we assume ḟ ≡ df/ds throughout the paper. Geodesic motions are ‘flat’,
θ = π/2 and the angular momentum is conserved too, giving rise to φ̇ =
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const ≡ h, hence φ = hs + φ0. In this spacetime each 2-sphere has its area
equal to 4πa2. Yet the metric radius of a sphere t = const and x = x0, i.e.
the length of the spatial geodesic (in the 3-space t = const) from the centre
to any point of the sphere is ax0. In this sense, the variable x is interpreted
as a radial coordinate and by a circular worldline one means a curve with
x = x0 > 0. The geodesic equation for the variable x,

ẍ+ ṫ2 sinhx coshx = 0 , (70)

excludes the existence of circular geodesics (with θ = π/2 and φ̇ 6= 0), hence
a body in a free fall must approach the centre or recede from it. We shall
not consider circular worldlines.

In the case of the twin A staying at x = x0 > 0, θ = π/2 and φ = φ0,
the universal integral of motion (for θ = π/2)

gαβẋ
αẋβ = a2

(
ṫ2 sinh2 x− ẋ2 − φ̇2

)
= 1 (71)

implies
t(s)− t0 =

s

a sinhx0
. (72)

As in Schwarzschild and CAdS spacetimes, gravitation here is attractive and
the twin C moves on a radial (h = 0) geodesic as in those cases: at P0(t = t0,
x = x0 > 0, φ = φ0) it flies away outwards with the initial velocity ẋ = u >
0, reaches maximal height x = xM at t = tM, falls back and returns to the
starting place at P1(t1 = 2tM − t0, x = x0). For the geodesic C the integral
of motion (71) reads, taking into account (69),

ẋ2 =
1

a2

(
k2

sinh2 x
− 1

)
(73)

and
k =

(
a2u2 + 1

)1/2
sinhx0 . (74)

The highest point of the flight is sinhxM = k, hence k > sinhx0 > 0. Notice
that as in anti-de Sitter spacetime ([8] (par. 5.2), [15]) the spatial infinity
is inaccessible for a massive particle. In fact, to reach x = ∞ it should
have infinite energy k. Integrating (73), one gets the dependence s(x), the
expressions are similar to those for CAdS and denoting κ2 ≡ k2 + 1 they
read

s(x) = a

[
arcsin

(
1

κ
coshx

)
− arcsin

(
1

κ
coshx0

)]
(75)

for the outgoing segment (x grows from x0 to xM) and

s(x) = πa− a
[
arcsin

(
1

κ
coshx

)
+ arcsin

(
1

κ
coshx0

)]
(76)
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for x decreasing from xM to x0 and farther to x = 0. The length of C from
P0 to P1 is

sC = 2s(xM) = πa− 2a arcsin

(
1

κ
coshx0

)
< πa . (77)

For k → ∞ one gets sC → πa for any finite x0. From dt/dx = ṫ/ẋ and
relations (69) and (73), one finds the time of flight from P0 to P1,

∆t ≡ t1 − t0 = 2(tM − t0) = 2 ln

(
k coshx0 +

√
k2 − sinh2 x0

)
−2 ln sinhx0 − ln

(
k2 + 1

)
. (78)

We now compare the lengths of worldlines A and C. From (72) the length
sA in the time interval ∆t is

sA = a∆t sinhx0 . (79)

A numerical example. For x0 = 5 and k = 1000 one gets xM = 7.60090,
sC = 2.99304a and sA = 1.99443a, then sC/sA = 1.50007; in general, there
is no doubt that the twin C is older than A at the reunion.

5.1. Jacobi fields and conjugate points on timelike radial geodesics

In the (t, x, θ, φ) chart the nonvanishing components of the curvature
tensor are R0101 = −a2 sinh2 x and R2323 = −a2 sin2 θ and for the Ricci
tensor these are R00 = sinh2 x, R11 = −1, R22 = +1, R33 = sin2 θ and
R = 0. With the aid of the two tensors and the vector ẋα tangent to
timelike radial (θ = π/2, φ = φ0) geodesic curves, which is determined by
(69) and (73), one finds that these lines contain conjugate points. On the
geodesic C, a triad of spacelike vector fields satisfying (2) is conveniently
chosen as

e1
α =

[
ε
(
k2 − sinh2 x

)1/2
a sinh2 x

,
k

a sinhx
, 0, 0

]
,

e2
α =

[
0, 0,

1

a
, 0

]
, e3

α =

[
0, 0, 0,

1

a

]
, (80)

where ε = +1 on the outgoing segment and ε = −1 on the ingoing one.
Employing this basis one expands a general Jacobi vector field Zµ(s) =∑

b Zb(s)eb
µ(s), b = 1, 2, 3 and the geodesic deviation equation for the Jacobi

scalars Zb(s) takes on the following form:

d2

ds2
Z1 +

1

a2
Z1 = 0 ,

d2

ds2
Z2 = 0 , and

d2

ds2
Z3 = 0 . (81)
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These immediately give the generic Jacobi field along the geodesic

Zµ(s) =
(
C11 sin

s

a
+ C12 cos

s

a

)
e1
µ + (C21s+C22) e2

µ + (C31s+C32) e3
µ .

(82)
The special Jacobi scalars vanishing at a given initial point s = 0 are Z1 =
C1 sin s/a, Z2 = C2 s and Z3 = C3 s. Conjugate points are determined by
the special Jacobi field for which C2 = C3 = 0, then the deviation vector
Zµ = C1e1

µ sin s
a lies in the 2-surface (t, x). Assuming that the geodesic

infinitely oscillates between the outermost spatial points (as in the CAdS
spacetime), one finds an infinite sequence of conjugate points Qn at distances
sn = nπa, n = 1, 2, . . ., from the initial point. One infers from the spherical
symmetry that these points, being the cut points, are the only cut points on
these curves and there are no other cut points on them. In the case of the
geodesic C, the nearest point Q1 conjugate to P0 is at the distance s = πa.
Since the length (77) of the segment P0P1 is sC < πa, point Q1 is beyond
this arc and the geodesic C is the longest curve among nearby curves joining
P0 and P1, i.e. it attains the local maximum of length. B–R spacetime is
not globally hyperbolic and most theorems on maximal curves in the space
of all curves joining two given points (see [3]) do not apply. By a direct
calculation we now show that the ingoing timelike radial geodesics are the
maximal curves (their length is equal to the distance function) between any
pair of points on the segment from the initial point to a point infinitesimally
close to x = 0 of each geodesic of the class.

To this end, we transform from the chart (68) to the Gaussian normal
geodesic (GNG) one, i.e. comoving coordinates in which the lines of the
time coordinate τ are the radial geodesics. For the Reader’s convenience, we
briefly present here the derivation from [3] adapted to the B–R spacetime.
Usually the GNG chart in a given spacetime is constructed in terms of
worldlines of massive particles freely falling down from rest at spatial infinity.
In B–R spacetime a particle with finite energy k cannot escape to infinity
and according to (73) we assume that a swarm of particles radially falls
down from the rest at x = xM, where sinhxM = k and k > 0. Then in
the GNG coordinates (τ,R, θ, φ) the velocity field of the radial geodesics
is uα = (1, 0, 0, 0) and is the gradient of their common proper time, uα =
(1, 0, 0, 0) = ∂ατ . On the other hand, the velocity field in the chart (68) has
components

uα =

[
k

a sinh2 x
,−1

a

(
k2

sinh2 x
− 1

)1/2

, 0, 0

]
and the transformation law for the contravariant components of the field
yields
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τ = akt+ a

∫ (
k2

sinh2 x
− 1

)1/2

dx . (83)

In a similar way, one gets

R = at+ ak

∫
dx

sinhx
(
k2 − sinh2 x

)1/2 . (84)

The inverse transformation is

coshx =
√
k2 + 1 sin

(
kR− τ
a

)
.

In the comoving coordinates the B–R metric is

ds2 = dτ2 −
(
k2 − sinh2 x

)
dR2 − a2

(
dθ2 + sin2 θ dφ2

)
, (85)

here 0 ≤ sinhx < k and alternatively −g11 = k2 − sinh2 x = (k2 + 1)
cos2

(
kR−τ
a

)
with −πa/2 < kR− τ < πa/2, what implies that the comoving

time coordinate is in the interval kR − πa/2 < τ < kR + πa/2. Now take
any radial geodesic in the domain of the GNG chart, R = R0, θ = θ0,
φ = φ0; along it there is ds = dτ . Its length between two points on it,
S1(τ1, R0, θ0, φ0) and S2(τ2, R0, θ0, φ0), where τ1 and τ2 are in the allowed
interval, is τ2− τ1 < πa. Let any other timelike curve with the endpoints S1
and S2 be parametrized by τ . Then its length is

τ2∫
τ1

[
1−

(
k2 − sinh2 x

)(dR
dτ

)2

− a2
(
dθ

dτ

)2

− a2 sin2 θ

(
dφ

dτ

)2
]1/2

dτ

< τ2 − τ1 < πa . (86)

Thus, in the domain of the comoving chart the radial ingoing geodesics are
maximal. From (75) one sees that the length of any radial outgoing (or
ingoing) timelike geodesic from x0 to xM is less than πa/2 and tends to this
upper limit for xM and k tending to infinity. This implies that the ingoing
geodesic from xM to x0 for any 0 < x0 < xM < ∞ entirely lies in the chart
domain and is globally maximal. Since the metric (68) is time symmetric,
the same theorem applies to outgoing radial geodesics.

6. Conclusions

The sample of the three spacetimes considered in this paper as appli-
cations of general methods developed in [3] do not allow one to formulate
a general rule concerning properties of timelike worldlines which may be



1074 L.M. Sokołowski, Z.A. Golda

used in various versions of the twin paradox. On the contrary, even in
the maximally symmetric spacetimes, de Sitter and CAdS, one encounters
a multitude of possibilities. The physical paradox is reduced to a purely
geometrical problem of finding the (possibly unique) longest timelike curve
joining two given points. This is a problem in global Lorentzian geometry
and it is well known that in globally hyperbolic spacetimes it always has a
well defined solution in the form of the maximal timelike geodesic segment
whose length is, by definition, equal to the Lorentzian distance function be-
tween its endpoints. In principle, to find out the maximal geodesic, one
must investigate all geodesics between given endpoints. High symmetry of
the spacetime is helpful in these investigations to a limited extent. The
four spacetimes (including Schwarzschild metric studied in [2]) are spheri-
cally symmetric, yet the differences in their global properties are at least
as important as their spherical symmetry. Our current study of a general
spherically symmetric static spacetime indicates that some common proper-
ties of timelike geodesics are accompanied by a diversity of distinct features
in various metrics.

We choose three physically interesting worldlines: staying at rest and
circular and radial motions and solve the twin problem by comparing their
lengths. Then, we go further and for geodesic worldlines (radial and possibly
circular), we determine the geodesic deviation vector fields and conjugate
points and in this way we find the locally longest geodesic segments. Finally,
in the three spacetimes studied here, de Sitter, CAdS and Bertotti–Robinson,
we are able to determine all cut points on the radial and circular geodesics
and show that they coincide with the conjugate points.

Circular geodesics in covering anti-de Sitter spacetime contain infinite
number of conjugate points. While these geodesics lie in the two-surfaces
t − φ (r = r0, θ = π/2), the nearby geodesics intersecting them at the
conjugate points, lie (besides these points) outside these surfaces.

In CAdS space the radial geodesics (infinitely oscillating between spatial
points maximally distant from the centre) contain an infinite sequence of
conjugate points equally separated by ∆s = πa and their segments of this
length are locally the longest curves between their endpoints. One Jacobi
vector field lies in the t− r surface (θ = π/2) of the radial geodesics, while
the other two fields are directed off it.

Similarly, in Bertotti–Robinson spacetime the oscillating radial timelike
geodesics contain infinite number of equally separate conjugate points and
these are the only cut points on these curves. Unlike the CAdS case, these
points are determined by one deviation vector field, that lying in the two-
surface t− x.

These few examples clearly show that in dealing with the geodesic devi-
ation vectors and conjugate points one must study case by case.
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