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This paper is devoted to the presentation of the lateral Casimir force
between two sinusoidally corrugated eccentric cylinders. Despite that ap-
plying path integral formulation explains the problem exactly, procedure of
applying this method is somehow complicated specially at non-zero temper-
ature. Using the proximity force approximation (PFA) helps to achieve the
lateral Casimir force in a truly explicit manner. We assume the cylinders
to be slightly eccentric with similar radiuses and separations much smaller
than corrugations’ wave length for the validity of PFA. For such short dis-
tances the effect of finite conductivity would be non negligible. In addition
to the effect of finite conductivity, we investigate thermal corrections of
the lateral Casimir force to reduce the inaccuracy of the result obtained by
PFA. Assuming the Casimir force density between two parallel plates, the
normal Casimir force between two cylinders is obtained. With the aid of
additive summation of the Casimir energy between cylinders without cor-
rugation, we obtain the lateral Casimir force between corrugated cylinders.
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1. Introduction

The Casimir force [1] between two neutral conductors arising from the
modification of the zero point energy associated with the quantum fluctu-
ations, has got very fast theoretical and experimental advancement in the
last decade [2–5]. The pioneer studies of the Casimir effect have been done
for two parallel plates or plate–sphere geometries. In 2006, Dalvit and his
collaborators have analyzed a different geometry. They have considered two
eccentric real metal cylinders [6] and by using the proximity force approx-
imation they have obtained the Casimir interaction energy. Nevertheless,
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afterwards they have investigated an exact solution for the mentioned ge-
ometry [7]. Calculations of the Casimir force between a plane and a nanos-
tructured surface at finite temperature in the framework of the scattering
theory has been presented in [8]. Considering regularized zero point energy
density for two parallel plates, a derivation for the normal Casimir force
between two parallel eccentric cylinders has been presented [9]. The normal
Casimir force as the well known Casimir force acts perpendicular to the sur-
faces. When the interacting bodies are located asymmetrically or they are
not isotropic, a lateral Casimir force may exist. Especially, two sinusoidally
corrugated surfaces experience a lateral Casimir force [10–13]. Theoretical
predictions of the lateral Casimir force and its corresponding torque were
performed in [14, 15]. This lateral force acts tangentially to the surface. It
has been investigated that the miniaturized parts of nanoscale devices may
couple by this lateral force without any contact [16–18]. Intuitively, one
expects this lateral Casimir force to be a solution to the problems like fric-
tion, adhesion and wear in nanomachines. Sinusoidally corrugated plate and
cylinder, considered as rock and pinion, has been introduced as a mechanical
rectifier in [19, 20]. Rock and pinion are suppose to be coupled by the quan-
tum fluctuations. In a recent investigation, angle dependence of the Casimir
force between corrugations has been demonstrated [21]. The lateral Casimir
force between a sinusoidally corrugated sphere and plate has been studied
experimentally and complete measurement data has been presented in [10].

The mentioned experimental and theoretical studies illustrate the real-
ization of such kinds of nanoscale devices.

In an attempt along these lines, we pay attention to the lateral Casimir
force between two sinusoidally corrugated eccentric cylinders. Consider-
ing recent progress in nanotechnology, these sinusoidally corrugated cylin-
ders may play an important role just like gears without contact in the
micro-electromechanical systems (MEMS). Leading and next-to-leading or-
der Casimir torque between concentric corrugated cylinders were derived
for the scalar case in Dirichlet and weak coupling limit [22] and similar in-
vestigation has been done for corrugated surfaces (see [23] for example).
It is worth mentioning that, using scattering theory approach, the lateral
Casimir force between two corrugated metallic plates has been investigated
in [24]. Rodrigues and his colleagues have obtained this force for the men-
tioned geometry outside the limit of validity of the PFA in [25]. This kind
of investigations lead in an exact result, but there are some difficulties in
applying exact approach to obtain exact result. A comparison has been done
between the exact result and the one obtained from the PFA in the weak
coupling limit [26], it has been noted that PFA is a good approximation for
separations much smaller than corrugations’ wave length. It is well known
that for corrugated surfaces the use of the proximity force approximation



Lateral Casimir Force Between Two Sinusoidally Corrugated Eccentric . . . 1121

may not lead to precise expressions for the Casimir force, but using this ap-
proximation leads in a simple procedure to achieve our purpose and removes
difficulties appearing in the path integral formalism. We assume the cylin-
ders to be slightly eccentric with similar radiuses for the validity of PFA. For
the short distances, the effect of finite conductivity would be non-negligible.
We also consider the finite-temperature corrections of the Casimir force to
reduce the inaccuracy of the result obtained by PFA. In order to obtain
the lateral Casimir force, organization of this paper is as follows. In Sec. 2
considering regularized zero point energy density for two parallel plates, we
present a derivation for the normal Casimir force between two parallel eccen-
tric cylinders. In Sec. 3 we obtain the Casimir energy density for corrugated
cylinders by the additive summation of the results obtained for cylinders
without corrugation. Considering finite conductivity of metals, we obtain
the corresponding corrections in the Casimir interaction energy. Then we
investigate the finite temperature corrections of the lateral Casimir force in
Sec. 4. Assuming thermal correction of the Casimir force density between
two perfect conductor plates and with the aid of PFA, we obtain the finite
temperature lateral Casimir force in the high temperature limit.

2. The Casimir interaction energy between
two eccentric cylinders

The scalar Casimir energy per unit area for two parallel perfect conduc-
tor plates with separation distance H and Dirichlet–Dirichlet or Neumann–
Neumann boundary condition is given by Epp(H) = − π2~c

1440H3 [1, 2, 27]. This
leads to the normal Casimir force density Fpp(H) = − π2~c

480H4 . The electro-
magnetic case is obtained from the scalar one by a factor 2, for this sim-
ple geometry. Now, consider two slightly eccentric cylinders with radiuses
larger than separation distance between them. Assume that cylinders are
corrugated and the following functions describe their longitudinal corruga-
tions [11]

r1 = A1 sin(2πx/λ) ,

r2 = h+A2 sin(2πx/λ+ ϕ) , (1)

where x denotes the coordinate, 2πx/λ is an angle, ϕ is the phase shift, A1

and A2 are the corrugation amplitudes, h is the mean separation distance
between the two surfaces of cylinders and λ is the corrugation wavelength.
Therefore, the shortest separation distance between two points of the corru-
gated surfaces can be written as

r2 − r1 = h+ β cos(2πx/λ− α) , (2)
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where β and α are both functions of ϕ as follows

β(ϕ) =
(
A2

1 +A2
2 − 2A1A2 cosϕ

)1/2
,

α(ϕ) = (A2 cosϕ−A1) / (A2 sinϕ) . (3)

As it has been investigating in [28], the normal Casimir force between
two parallel eccentric cylinders is obtained by integrating the Casimir force
density over the area of one of the cylinders, i.e.

Fcc =

∫
Fpp(H)ds , (4)

considering that H is the distance from a point of the integrated cylin-
der to the other one. They have used polar coordinates to determine that
the shortest separation distance from the point with parameter θ from
the integrated cylinder (one of radius b) to the cylinder of radius a is√
b2 + δ2 − 2bδ cos θ − a, where δ = b− a− h.

Fcc = −π
2bL

240

π∫
0

1(√
b2 + δ2 − 2bδ cos θ − a

)4dθ , (5)

where L is length of the cylinders and we focus on the special case of a ' b in
which the Casimir force between slightly eccentric cylinders may be obtained.
Applying the change of variables (as hinted in [28]) u =

√
b2+δ2−2bδ cos θ−a

d
in the limit h → 0, the author has found the leading order term of the
proximity force approximation of the configuration as

Fcc ∼ −
π3
√
abL

768
√

2(b− a)h7/2
. (6)

One may obtain the Casimir energy between two interior eccentric cylinders
without corrugations by integrating the normal Casimir force with respect
to separation distance h

Ecc =

∞∫
h

Fccdh =
2

5

(
π3
√
abL

768
√

2(b− a)h5/2

)
. (7)
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3. The Casimir energy density for
two corrugated eccentric cylinders

Considering the equal probability of all the separation distances r2 − r1
introduced by Eq. (2) [11, 27, 29, 30], with respect to the additive summation
of the results obtained for cylinders without corrugation, the Casimir energy
density for corrugated cylinders with large corrugation wavelength λ > r can
be found

Ecor
cc =

1

λ

λ∫
0

Ecc(r2 − r1)dx

=
2

5λ

(
π3
√
abL

768
√

2(b− a)

) λ∫
0

1

(h+ β cos(2πx/λ− α))5/2
dx . (8)

The lateral Casimir force is obtained by taking derivative with respect to
the phase shift

F lat
cc = −2π

λ

∂

∂ϕ
Ecor

cc =
−π3
√
abL

960
√

2(b−a)λ

A1A2 sinϕ√
A2

1 +A2
2 − 2A1A2 cosϕ

Π(h, α, β) ,

(9)
where Π(h, α, β) is

1

6β(−β + h)3(β + h)5/2π

×
{
h
(
29β2 + 3h2

)(
E
(
π − α

2
,

2β

β + h

)
+ E

(
α

2
,

2β

β + h

))
+ (β − h)

(
5β2 + 3h2

)(
F
(
π − α

2
,

2β

β + h

)
+ F

(
α

2
,

2β

β + h

))}
, (10)

and F and E are the elliptic integrals of the first and second kind respectively.
Applying the proximity, force approximation for the case of two exterior

cylinders (at small separation), for the normal Casimir force is obtained [28]

Fcc ∼ −
π3
√
abL

768
√

2(b+ a)h7/2
. (11)

Following steps just like in the case of two cylinders out of each other, one
can easily obtain a similar result for the lateral Casimir force corresponding
to the case of two exterior cylinders
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F lat
cc =

π4
√
abL

960
√

2(b+ a)λ

A1A2 sinϕ√
A2

1 +A2
2 − 2A1A2 cosϕ

Π(h, α, β) , (12)

where Π(h, α, β) is introduced before in Eq. (10). It is worth mentioning
that one can obtain this result just by replacing (b−a) in Eq. (9) by (b+a).

Considering finite conductivity of metals, corresponding corrections may
be included in the mentioned scalar Casimir energy per unit area for two
parallel perfect conductor plates [31–33]

Epp(H) = − π2

1440H3

(
1 +

4∑
n=1

Cn

(
λp

2πH

)n)
, (13)

where λp is the plasma wavelength and the coefficients Cn are as follows

C1 = −4 , C2 =
72

5
, C3 = −320

7

(
1− π2

210

)
,

C4 =
400

3

(
1− 163π2

7350

)
.

At the separations H ≥ λp, Eq. (13) is applicable. Imposing PFA approxi-
mation on the correction terms leads to the following correction in the force
derived by Eq. (6)

∆Fcc ∼
4∑

n=1

n

h9/2+n
Bn

(
λp
2π

)n
, (14)

where

Bn = − π2L
√
ab

240
√

2(b− a)

√
π Γ (9/2 + n)

Γ (5 + n)
Cn , (15)

in which Cn are the coefficients introduced before. By integrating the cor-
rection of the Casimir force with respect to the separation distance h, effect
of the finite conductivity in the Casimir energy is

∆Ecc ∼ −
4∑

n=1

n

(7/2 + n)h7/2+n
Bn

(
λp
2π

)n
. (16)

Considering the mentioned sinusoidally corrugations with large corrugation
wavelength by imposing additive summation of Eq. (8) on the corrections,
effect of the finite conductivity on the corrugated Casimir energy can be
obtained
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∆Ecor
cc ∼ − π2L

√
ab

240
√

2(b− a)

(
λp
2π

) √
h+ β

(h2 − β2)4

[
− 1

480
Ξ1

+
3

800

(
λp
2π

)
1

(h2−β2)
Ξ2 +

1

2352

(
1− π2

210

)(
λp
2π

)2 1

(h2−β2)2
Ξ3

+
5

16128

(
1− 163π2

7350

)(
λp
2π

)3 1

(h2 − β2)3
Ξ4

]
, (17)

with the set of functions Ξi, i = 1, . . . , 4, functions of (h, α, β), as follows

Ξ1 = 16h
(
11h2 + 13β2

)(
E
(
π − α

2
,

2β

β + h

)
+ E

(
α

2
,

2β

β + h

))
−(h− β)

(
71h2 + 25β2

)(
F
(
π − α

2
,

2β

β + h

)
+ F

(
α

2
,

2β

β + h

))
,

Ξ2 =

{(
563h4 + 1338h2β2 + 147β4

)(
E
(
π − α

2
,

2β

β+h

)
+ E

(
α

2
,

2β

β+h

))
−8h (h−β)

(
31h2 + 33β2

)(
F
(
π − α

2
,

2β

β+h

)
+ F

(
α

2
,

2β

β+h

))}
,

Ξ3 =

{
4h
(
1627h4 + 6474h2β2 + 2139β4

)(
E
(
π − α

2
,

2β

β + h

)
+E
(
α

2
,

2β

β + h

))
− (h− β)

(
3043h4 + 6522h2β2 + 675β4

)
×
(
F
(
π − α

2
,

2β

β + h

)
+ F

(
α

2
,

2β

β + h

))}
,

Ξ4 =
{(

88069h6 + 527729h4β2 + 34955h2β4 + 17787139β6
)

×
(
E
(
π − α

2
,

2β

β + h

)
+ E

(
α

2
,

2β

β + h

))
−16h (h− β)

(
2689h4 + 9662h2β2 + 3009β4

)
×
(
F
(
π − α

2
,

2β

β + h

)
+ F

(
α

2
,

2β

β + h

))}
. (18)

Therefore, the correction to the lateral Casimir force due to the finite con-
ductivity can be calculated

∆F lat
cc = −2π

λ

∂

∂ϕ
∆Ecor

cc =
−2π

λ

A1A2 sinϕ√
A2

1 +A2
2 − 2A1A2 cosϕ

∂

∂β
∆Ecor

cc . (19)
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4. The finite temperature corrections of the lateral
Casimir force

The finite temperature Casimir force per unit area for two parallel plates
with Dirichlet–Dirichlet or Neumann–Neumann boundary condition is
(see [34] and references therein)

Fpp(h) = − π2

480h4
− π2T 4

90
+
πT

2h3

∞∑
k=1

∞∑
l=1

k2

l
exp

(
−πkl
hT

)
, (20)

or

Fpp(h) = −ξR(3)T

8πh3
− T

π

∞∑
k=1

∞∑
l=1

(
2π2l2T 2

kh
+
πlT

k2h2
+

1

4k3h3

)
e−4πhTkl , (21)

where h is the separation distance between the plates. Applying proximity
force approximation is equivalent to approximate the investigated geome-
try with two plates geometry in the appropriate limit (for example, this
approximation is applied for cylinder-plate geometry in [34]). Considering
this correspondence with two plates geometry, one may calculate electro-
magnetic Casimir force from the scalar case by multiplying it by a factor 2.
Equation (20) displays that in the low temperature limit thermal correction
is dominated by the term corresponding to T = 0 and, therefore, the first
term of the thermal corrections in the low temperature region is

4Fpp(h) ∼ −π
2T 4

90
. (22)

Considering this thermal correction and by using PFA, thermal correction
of the normal Casimir force reads

4Fcc ∼ −
Lbπ3T 4

45
+ . . . (23)

which is independent of h. Corresponding to this force thermal correction
of the Casimir energy of two smooth cylinders is

4Ecc ∼
Lbπ3T 4

45
h+ . . . (24)

Taking sinusoidally corrugation into account, one obtains the following ex-
pression for thermal correction of the Casimir energy of the configuration of
Fig. 1 as

4Ecor
cc ∼ −

Lbπ3T 4

45
h+ . . . (25)
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Fig. 1. The cross section of two parallel eccentric cylinders. Distances are overstated
in the figure. Cylinders are slightly eccentric and a ' b.

There is no phase-dependent in the obtained result. Therefore, thermal
correction in the low temperature region does not take part in the lateral
Casimir force.

Considering Eq. (21) in the high temperature limit, the exponential term
goes to zero quickly. Therefore, the classical term is the leading term of the
thermal correction

4Fpp(h) ∼ −ξR(3)T

8πh3
+ . . . (26)

Imposing the proximity force approximation to Eq. (26) gives

4Fcc ∼ −
2ξR(3)TLb

8π

π∫
0

(√
b2 + δ2 − 2bδ cos θ − a

)−3
dθ + . . . , (27)

where for the case of two interior eccentric cylinders δ = b − a − h. Notice
that since we are in high temperature region, this term may be the main
term of the normal Casimir force. Performing the integral, we have

4Fcc ∼ −
2ξR(3)TL

3π2

√
ab

2(b− a)

1

h5/2
+ . . . , (28)

and the thermal correction of the Casimir energy is as follow

4Ecc ∼ −
ξR(3)TL

16π

√
ab

2(b− a)

1

(h− β)
√
h+ β

×
{
E
(
π − α

2
,

2β

β + h

)
+ E

(
α

2
,

2β

β + h

)}
+ . . . (29)
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Therefore, the thermal correction of the lateral Casimir force between two
sinusoidally corrugated eccentric cylinders at high temperature is

4F lat,highT
cc ∼ ξR(3) TL

√
ab

16
√

2(b− a)Λ

A1A2 sinϕ√
A2

1 +A2
2 − 2A1A2 cosϕ

Ω(h, α, β) + . . . ,

(30)
where Ω(h, α, β) is

1

(h− β)2β(h+ β)3/2

{(
h2 + 3β2

)(
E
(
π − α

2
,

2β

β+h

)
+ E

(
α

2
,

2β

β+h

))
−h(h− β)

(
F
(
π − α

2
,

2β

β + h

)
+ F

(
α

2
,

2β

β + h

))}
. (31)

5. Conclusion

Considering the importance of the Casimir interaction in the nanotech-
nology, we have studied the lateral Casimir force between two sinusoidally
corrugated eccentric cylinders. The mentioned geometry may play an impor-
tant role as a pair of non-contact gears in micro-electromechanical systems.
Applying path integral formulation results in the exact solution but there
exist some difficulties. Therefore, we have used the proximity force approx-
imation to achieve our purpose and emitting the difficulties appear in the
path integral approach. It is worth mentioning that one cannot use PFA
approximation at separations comparable with a period of corrugation. We
have assumed the cylinders to be slightly eccentric with similar radiuses and
separations much smaller than corrugations’ wave length for the validity of
PFA. For such short distances, the effect of finite conductivity would be
non-negligible. In addition to the effect of finite conductivity, we have ob-
tained finite-temperature corrections on the lateral Casimir force to reduce
the inaccuracy of the result obtained by PFA. Applying this approximation
does not lead to a correction in the low temperature limit but, it concludes
in a correction in the hight temperature region. It is worth mentioning that
one can obtain the zero-temperature lateral Casimir force between two ex-
terior sinusoidally corrugated cylinders just by replacing (b − a) in Eq. (9)
by (b+ a).

We thank A. Moradian for helpful discussions and correspondence. We
thank also Kh. Ghamari for designing the figure.
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