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A statistical theory incorporating temperature, angular momentum and
deformation degrees of freedom for complex nuclear system has been devel-
oped. An investigation for nuclear specific heat as a function of temperature
and angular momentum is provided. The occurrence of a peak structure in
the specific heat at temperatures of the order of 2.0–3.0 MeV confirms the
phase transitions for seven even–even 2s–1d shell nuclei.
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1. Introduction

In recent years, phase transition in a nucleus has been an important phe-
nomenon in the study of nuclear properties [1, 2]. Nuclei are a finite quantum
system, which has unique transitional features. In nuclei, two types of phase
transitions occur: (i) pairing phase transition (superfluid to normal fluid)
and (ii) shape-phase transition (deformed to spherical shape). The second
type of phase transitions is also called quantum phase transitions. Quan-
tum phase transitions have also been extended to excited state, which is a
qualitative change in the properties of the system as a function of the exci-
tation energy [3]. The phase transitions in finite nuclei have been measured
by many physicists from the experimental [4] and theoretical [5–7] point of
view.

The vanishing of an order parameter such as the gap parameter in super-
fluid nuclei and the quadrupole moment in the deformed nuclei has been of-
fered as evidence for the existence of a phase transition in such systems [8, 9].

(989)
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The phase transition from superfluid to normal nuclear matter has been
elaborately investigated in the determination of single particle level density
parameter as a function of angular momentum and temperature reported
in Ref. [10]. In the present study, we have extended our investigation of
nuclear phase transitions in light nuclei, with particular focus to its geomet-
rical forms. The nuclear specific heat is also one among them to study the
existence of phase transition.

One important tool to study the phase transition is the specific heat.
The specific heat is recognized as a quantity which indicates the occurrence
of phase transition. The nuclear specific heat of a fused compound system
formed in heavy ion collision can be estimated if the excited states spec-
trum is well-known. Elementary examples of this are stated by Pathria [11],
including the free particle, the harmonic oscillator and rigid rotor. The
behavior of nuclear specific heat at high temperature directly yields the in-
formation about the relevant degrees of freedom in the spectrum of Dulong
and Petit’s law. Tanabe, Goodman, Cole, Miller and others [12–21] have
emphasized the role of nuclear specific heat in the determination of impor-
tant properties of the nuclei. One motivating feature is the peak structure
in specific heat which endorses the existence of phase transition [22]. It is
the aim of this paper to study the interplay between specific heat and phase
transition in finite nuclear systems.

Several authors have extensively investigated [12, 15–21] the subsistence
of phase transition in finite nuclei. Miller et al. [16] have envisaged the oc-
currence of phase transition using finite temperature Hartree–Fock (FTHF)
approximation and in the exact canonical ensemble. Rossignoli et al. [23]
have investigated the correlation between thermal effects and two of the
crucial ingredients of the many body problem, via superconductivity and
deformation due to a long-range residual force. They have also presented
a finite temperature projection method which exhibits important shortcom-
ings such as the prediction of sharp phase transition [24].

Until the present, a foremost activity has been accomplished using the
interacting boson model (IBM) for the study of phase transitions [25]. On the
other hand, various cranking Hartree–Fock–Bogliubov (CHFB) calculations
provide a reliable analysis for medium and heavy systems [26]. In recent
times, a self consistent mean field calculations combined with the random
phase approximation (RPA) analysis are beneficial to detect quantum phase
transitions [27]. In contrary, analogous investigations have shown that the
proposed phase transition does not occur for some nuclei belonging to the
2s–1d shell [19].

The appearance of peaks in the specific heat at temperatures T =1.7 MeV
and 3.1 MeV for the nuclei 24Mg corresponding to average change in shape of
the nucleus from ellipsoidal to axially symmetric and from axially symmetric
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to spherically symmetric shapes, emerge as a signal for phase transitions [17].
Hasegawa et al. [28] have witnessed shape phase transition in A ≈ 70 nuclei
along theN ≈ Z line. This occurrence of phase transition to deformed nuclei
is due to the strong proton–neutron correlations in these nuclei. Civitarese
et al. [20] have reported that the occurrence of a bump in the specific heat
in some of the light nuclei belonging to the 2s–1d shell using nuclear SU3

model, may be due to finite size effect rather to a phase transition. Thermal
excitation induces change in the nuclear shape related to this phase tran-
sition and the peak in specific heat appears due to change in level density
allied with thermal excitation.

It is really interesting and open question whether or not phase transi-
tions do occur in finite nuclear system at finite temperatures and signatures
of these phase transitions remain despite of fluctuations [29]. The finite tem-
perature mean field theories such as Bardeen–Cooper–Schrieffer (BCS) [30],
Hartree–Fock (HF) [31], and Hartree–Fock–Bogliubov (HFB) [32, 33] have
been addressed the phase transition from superfulid to normal fluid nuclear
matter. Esashika et al. [34] have studied the influence of number and num-
ber parity projections on heat capacities of nuclear systems 161Dy and 162Dy
using finite temperature BCS theory and found S-shaped heat capacity at
temperature T less than the critical temperature Tc, that corresponds to the
superfluid to normal phase transition. Using the shell model Monte Carlo
approach, the signatures of both paring and shape–phase transition in the
families of even–even rare earth samarium and neodymium isotopes were
found in collective enhancement factors of level densities by Ozen et al. [35].
Even so, empirical analysis of experimental observation does not prognosti-
cate an abrupt phase transition, the cause being disregard of fluctuation in
the mean field approximations. The quantal and statistical fluctuations are
necessary in identifying phase transitions in light nuclear systems. Within
the framework of static path approximation (SPA) plus random phase ap-
proximation (RPA) treatment, Rossignoli et al. [36] have investigated ther-
mal and quantal fluctuations and even–odd effects in nuclear systems 164Er
and 165Er at finite temperature. Evaluating RPA correction to SPA they
have found the smoothing of the BCS transition and the even–odd effects
in the pairing energy and specific heat. Liu and Alhassid [37] have devel-
oped a new method for calculating the heat capacity using the shell model
Monte Carlo (SMMC) approach, for iron isotopes 52−62Fe, and identified a
signature of phase transition in the heat capacities despite the large fluctua-
tions. Strictly speaking, quantal and statistical fluctuations are of essential
importance since they smooth out the singularities allied with phase transi-
tions [38]. In the statistical theory, the equilibrium shape of the nucleus at
given angular momentum and temperature has been obtained by minimiz-
ing the free energy as a function of deformation. Therefore, our statistical
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approach to establish the existence of phase transition in finite light nuclei is
consistent with mean field theories which render the thermodynamical limit.
Consequently, our statistical approach does not take into account the effect
of shape fluctuations. However, the statistical theory incorporates the de-
formation degrees of freedom, collective and non-collective rotation is used
to verify further that a phase transition has indeed occurred for nuclei with
20 ≤ A ≤ 30. This theory has been used in the evaluation of single par-
ticle level density parameter [39], neutron separation energy and emission
probability at high spins [40].

Moretto [41] promoted the statistical model by using the single-particle
levels of deformed nuclei. Statistical calculations are performed using the
grand-canonical ensemble. The determinations of grand partition function of
the system are based on the conservation of energy, number of particles and
angular momentum projection along the z-axis. In the present manuscript,
calculations have been performed on the nuclear specific heat for the light
nuclei such as: 20

10Ne, 22
10Ne, 24

10Ne, 24
12Mg, 26

12Mg, 28
14Si, and 30

14Si. It shows the
presence of a bump at T of the order of 2.0 to 3.5 MeV for all the light
nuclei. The results obtained from our calculations are similar to reported
in [17, 20, 38].

The atomic nucleus comprises a unique system in that it exhibits both
microscopic features [42] and statistical aspects generally explained in terms
of level density [43]. The nuclear level density as a function of excitation
energy is an important fundamental property which is used to derive all
thermodynamical quantities such as entropy and specific heat of the excited
nuclei. Moreover, it provides a strongest test for nuclear models [44]. Since
the phase-space governs the properties of a large class of nuclear reactions, a
precise knowledge of level density is essential for understanding the nuclear
reactions. At higher excitation energies, the nuclear level density increases so
rapidly that it is practically impossible to study the transition between the
levels and hence a statistical description becomes adequate. Level density
formalisms have been developed and applied both to schematic and realis-
tic single-particle spectra. Most calculations of nuclear level densities are
extensions and modifications of the Fermi gas model to which pairing and
shell effects are added semi-empirically [45]. Such an approach has led to a
quantitative understanding of the disappearance of the shell effects with in-
creasing excitation energy. This feature, contained in the statistical theory,
has been used to calculate the ground-state shell effects as an alternative to
the Strutinsky method [46].

For higher excitation energy, one can use models such as the back-shifted
Fermi gas (BSFG) model [4], the constant temperature (CT) model [47] or
the interacting shell model (ISM) [48]. The ISM is a good microscopic
model for the calculations of level densities since it includes both shell
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effects and residual interactions. The statistical properties of nuclei using
the shell model Monte Carlo method are calculated by Mocelj et al. [49].
Many approaches make use of a phenomenological treatment such as the
macroscopic–microscopic finite range droplet model [50]. But a consistent
microscopic description of all the required properties of nuclei is still not fea-
sible. Thus in this paper, we tried to have a better understanding of phase
transition using the statistical theory of hot rotating nuclei (STHR). The
behavior of the excitation energy, specific heat and nuclear level density, and
level density parameter are extracted. However, our main focus is on spe-
cific heat and phase transition, the results of level density parameter are not
presented. It is found that the calculated values of level density parameter
very well reproduce the empirical relation A/8 or A/10.

In Sec. 2 the formalism is used to describe the nuclear specific heat and
level density. The results and discussions are given in Sec. 3.

2. Formalism

Statistical descriptions of finite nuclear systems are generally based on
grand canonical ensemble averages. For various events, one often needs a
statistics with good quantum numbers like angular momentum or particle
number, which requires a use of constrained ensembles. The common proce-
dure consists in determining first the grand partition function of the system
and then in restricting it in such a way, so as to conserve energy, number
of particles and angular momentum. The basic ingredient to the statisti-
cal theory is a suitable shell model level scheme. The method of obtaining
the single particle energy levels using the deformed Nilsson Hamiltonian is
briefly given below.

The Hamiltonian for the deformed Nilsson oscillator [51] is given by

H =
p2

2m
+
(m
2

) (
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
+ Cl′.s+D

(
l′
2 − 2

〈
l′
2
〉)

, (1)

with C = 2κ~ω0 and D = κµ~ω0. Here, ω0 is the harmonic oscillator param-
eter that involves the principle of volume conservation for nuclei deformed
from spherical shapes. ωx, ωy, and ωz are the three oscillator frequencies
with the constraint that the total volume remains constant such that

ωxωyωz = ω3
0 = constant . (2)

The coefficients for the l′.s and l′2 − 2〈l′2〉 terms are taken from Seeger [52]
who has fitted them to produce the shell corrections to ground-state masses.
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The value of undeformed oscillator spacing ~ω0 = 41 MeV/(A1/3+0.77)
is used in our level scheme and the κ and µ values are taken from Ref. [53].
The single particle energies εi and spin projections mi as a function of defor-
mation parameter δ are obtained by diagonalizing the Nilsson Hamiltonian
in cylindrical basis. The single particle energies are generated up to N = 11
levels which are found to be sufficient for the range of temperatures used in
the present study. The required angular momenta are generated by intro-
ducing the z projection of the angular momentum as a constant of motion
through the Lagrangian multiplier γ corresponding to the single-particle
spins mi [40, 41]. Calculations are carried out by varying deformation pa-
rameter δ values in steps of 0.1 from −0.6 (oblate) to 0.6 (prolate).

2.1. Statistical theory

The statistical properties of the system are contained in the grand par-
tition function which is given by [41]

lnQ =
∑
i

ln
[
1 + exp

(
αN + γmN

i − βεNi
)]

+
∑
i

ln
[
1 + exp

(
αZ + γmZ

i − βεZi
)]
, (3)

where the Lagrange multipliers αN , αZ , β, and γ conserve the number of
neutrons, protons, total energy for a temperature T = 1/β and the an-
gular momentum of the system respectively and are fixed by the following
equations

〈N〉 =
∂ lnQ

∂αN
, (4)

〈Z〉 =
∂ lnQ

∂αZ
, (5)

〈I〉 =
∂ lnQ

∂γ
, (6)

〈E〉 = −∂ lnQ
∂β

. (7)

The single particle levels for the neutrons εNi with spin projection mN
i

and protons εZi with the spin projection mZ
i are obtained from the Nilsson

Hamiltonian. The particle number equations for neutrons, protons and the
corresponding equations for angular momentum I and energy E are given
below [40]

N =
∑
i

nNi , (8)
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Z =
∑
i

nZi , (9)

I =
∑
i

mN
i n

N
i +

∑
i

mZ
i n

Z
i , (10)

E(I, T ) =
∑
i

εNi n
N
i +

∑
i

εZi n
Z
i . (11)

The entropy is calculated using the relation

S(I, T ) = −
∑
i

[
nNi lnnNi +

(
1− nNi

)
ln
(
1− nNi

)]
−
∑
i

[
nZi lnnZi +

(
1− nZi

)
ln
(
1− nZi

)]
. (12)

Equations (8), (9) and (10) have to be solved to determine αN , αZ and γ
for each temperature T = 1/β. The excitation energy E∗(I, T ) is obtained
using the relation

E∗(I, T ) = E(I, T )− E0 , (13)

where E0 is the ground state energy of the system. The specific heat CV as
a function of angular momentum I and temperature T is given as

CV (I, T ) = T
dS(I, T )

dT
, (14)

or

CV (I, T ) =
dE(I, T )

dT
. (15)

The nuclear level density [54] for various excitation energies and angular
momentum is given by

ρ(E∗) =

(
~2/2θ

) 3
2 (2I + 1)

√
a exp

(
2
√
aE∗

)
12(E∗ + T )2

, (16)

where a is the single particle level density parameter and θ is the rigid
body moment of inertia. This expression has been already used in our cal-
culation of single neutron emission probability for fused compound system
of 156Er [39] and the results obtained agree very well with the experimental
data of Henss et al. [55]. The free energy of the hot rotating system contains
all the thermodynamic information and is computed as

F (I, T ) = E(I, T )− TS . (17)
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The minimisation of the above expression with respect to the deformation
parameter δ determines the equilibrium shape of the nucleus as a function of
angular momentum and temperature [6]. The parameters like total energy,
excitation energy, specific heat, level density and level density parameter are
computed as a function of angular momentum I, temperature T . The range
of the angular momentum and temperature are considered in our calculations
as I = 0 to 16 ~ and T = 0.5 MeV to 6 MeV respectively. All the curves
are drawn in Figs. 1–11, after minimizing the free energy with respect to the
deformation parameter.

3. Results and discussion

In this work, we have offered certain evidences for the occurrence of phase
transition in light nuclei belonging to the 2s–1d shell. The numerical results
of excitation energy E∗ as a function of temperature T and angular momen-
tum I for the nuclei 20

10Ne, 22
10Ne, 24

12Mg, and 28
14Si are shown in Figs. 1 and 2

with a change in slope at certain regions for all the nuclei. Figure 1 shows a
rapid change of slope for I = 0~ at T ≈ 3.5 MeV for all the four nuclei. This
consents moderately with a critical temperature of about 3.1 MeV for the
ensemble average of energy obtained in FTHF calculations of Miller et al.
[16]. They have found a change in slope at T ≈ 1.7 MeV and T ≈ 3.1 MeV
for 24

12Mg. Similar effects are seen for 24
12Mg, at I = 0~ with the change in the

slope at T ≈ 3.7 MeV and for 28
14Si shows transformations at T ≈ 1.5 MeV

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0

10

20

30

40

50 28Si
24Mg

22Ne

20Ne

 
 

E* (M
eV

)

T (MeV)

Fig. 1. The excitation energy E∗ as a function of temperatures T at the angular
momentum I = 0~ for 20Ne, 22Ne, 24Mg and 28Si.
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and T ≈ 3.0 MeV. Usually, a change in the slope at T ≈ 1.5 MeV implies
a change in the system from a triaxial to an axially symmetric shape and
a change at T ≈ 3.0 MeV signifies a deformed to spherical phase transition
[16, 38]. Therefore, for all the four nuclei considered, one can see a sud-
den transformation at T ≈ 3.5 MeV (Fig. 1) which can be interpreted as
evidences for phase transition.
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Fig. 2. The excitation energy E∗ as a function of angular momentum I for various
temperatures T for 20Ne, 22Ne, 24Mg and 28Si. The numbers on the curve refer to
the temperature in units of MeV.
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Fig. 3. (a) The nuclear specific heat CV as a function of temperature T at the
angular momentum I = 0~ for 20Ne, 22Ne, 24Mg, and 28Si. (b) The nuclear level
density ρ as a function of temperature at the angular momentum I = 0~ for 20Ne,
22Ne, 24Mg, and 28Si.
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Fig. 4. (a) The nuclear specific heat CV as a function of temperature T at the
angular momentum I = 0~ for 24Ne, 26Mg, and 30Si. (b) The nuclear level density ρ
as a function of temperature at the angular momentum I = 0~ for 24Ne, 26Mg, and
30Si.
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Specific heat and level density calculations are executed for all the seven
even–even 2s–1d shell nuclei considered in the text. The nuclear specific
heat CV dependent on the temperature for I = 0~ is presented in Fig. 3 (a)
for 20

10Ne, 22
10Ne, 24

12Mg, and 28
14Si and in Fig. 4 (a) for 24

10Ne, 26
12Mg, and 30

14Si.
All the nuclei have a general tendency to exhibit an abrupt change in the
specific heat beyond temperature 1.5 MeV. The peak in specific heat occurs
at different temperatures for different nuclei.

In Fig. 3 (a) the peak appears at T ≈ 2.25 MeV for 20
10Ne and 22

10Ne,
at T ≈ 2.75 MeV for 24

12Mg and at T ≈ 3.0 MeV for2814Si. Figure 4 (a)
shows the peak at T ≈ 2.25 MeV for 24

10Ne, T ≈ 3.25 MeV for 26
12Mg and

T ≈ 3.0 MeV for 30
14Si. The bump in specific heat at T between 2.0 and

4.0 MeV is analogous to the one reported in [20] for all the light nuclei. Miller
et al. [17] have computed specific heat for 20

10Ne using the canonical ensemble
from the eigenstates of different effective interactions. They have pointed
out analogous peak in specific heat at T ≈ 2.1 MeV in FTHF approximation
for the Vary–Yang interaction signifying that a deformed-to-spherical phase
transition has taken place. Thus we note that with increasing temperature,
the appearance of prominent peak in specific heat for all the nuclei can be
interpreted as the signature of phase transition associated with a change in
nuclear shape.

However, the peak, as shown in a canonical ensemble calculations of
the specific heat in 24

12Mg [16, 17, 20], which occurs at low temperature
(T ≈ 0.5 MeV) does not appear in the present work. If specific heat is
calculated using the states in the ground state rotational band alone, the

TABLE I

The CV (I, T ) as a function of angular momentum and temperature for 20Ne.

T [MeV] Specific heat CV

I = 0~ I = 4~ I = 8~ I = 12~ I = 16~

.50 3.26 1.42 1.40 1.09 4.59
1.00 5.44 6.13 3.26 3.78 6.53
1.50 6.94 3.95 7.34 7.08 8.77
2.00 14.48 9.25 11.18 10.18 11.29
2.50 16.40 13.87 14.28 13.26 14.19
3.00 13.87 16.91 17.34 15.78 16.71
3.50 17.95 19.62 19.72 18.98 19.13
4.00 21.42 22.80 22.80 21.26 21.65
4.50 23.95 24.51 24.63 23.83 24.17
5.00 26.23 26.23 26.55 25.91 26.40
5.50 28.56 28.56 29.75 28.18 28.61
6.00 30.88 30.88 30.42 30.23 30.46
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smaller peak at the lower temperature can be effectively reproduced [16]. It
has to be taken into account that the larger peak in specific heat will not
be noticed, if only the states in the ground state rotational band alone are
considered. Tables I–VII give the specific heat as a function of temperature
and angular momentum for all the seven nuclei.

TABLE II

The CV (I, T ) as a function of angular momentum and temperature for 22Ne.

T [MeV] Specific heat CV

I = 0~ I = 4~ I = 8~ I = 12~ I = 16~

.50 .69 1.70 2.08 .81 3.10
1.00 5.73 4.81 4.45 4.34 6.34
1.50 8.31 6.80 6.67 9.08 9.36
2.00 11.17 10.38 10.75 11.81 13.10
2.50 12.97 13.49 14.72 15.44 16.34
3.00 16.03 15.82 18.07 17.86 19.15
3.50 18.51 19.80 21.29 20.70 21.58
4.00 22.38 22.88 23.61 23.68 24.38
4.50 25.54 25.96 26.38 25.88 26.81
5.00 28.56 28.70 29.12 28.74 29.59
5.50 31.17 31.17 32.16 31.15 31.46
6.00 33.76 33.76 34.32 33.56 33.67

TABLE III

The CV (I, T ) as a function of angular momentum and temperature for 24Ne.

T [MeV] Specific heat CV

I = 0~ I = 4~ I = 8~ I = 12~ I = 16~

.50 1.56 2.41 1.56 2.75 1.92
1.00 5.22 7.55 4.32 6.69 5.97
1.50 9.11 8.60 10.02 10.25 10.51
2.00 17.30 11.11 11.78 13.93 14.19
2.50 18.18 17.43 15.52 17.38 17.25
3.00 16.52 18.26 19.29 20.44 20.94
3.50 20.79 19.21 22.41 23.50 23.63
4.00 24.51 22.89 25.57 26.46 26.95
4.50 27.85 26.20 28.48 29.39 29.39
5.00 31.51 29.68 30.98 32.22 32.22
5.50 34.07 32.42 34.07 34.68 34.55
6.00 36.49 35.17 36.49 36.76 36.76
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TABLE IV

The CV (I, T ) as a function of angular momentum and temperature for 24Mg.

T [MeV] Specific heat CV

I = 0~ I = 4~ I = 8~ I = 12~ I = 16~

.50 2.79 1.19 4.03 2.85 4.62
1.00 3.55 4.14 5.77 5.76 8.04
1.50 6.68 8.76 7.72 9.78 11.86
2.00 12.46 10.54 12.90 14.28 14.55
2.50 23.32 13.37 14.56 17.78 18.11
3.00 22.56 21.37 18.86 20.75 20.94
3.50 19.58 19.14 22.28 23.60 23.89
4.00 23.76 24.19 25.67 26.58 27.08
4.50 27.31 28.09 28.45 29.79 29.65
5.00 30.63 31.07 31.30 32.25 32.22
5.50 33.76 33.79 34.15 34.43 34.81
6.00 36.66 36.66 36.66 37.03 37.25

TABLE V

The CV (I, T ) as a function of angular momentum and temperature for 26Mg.

T [MeV] Specific heat CV

I = 0~ I = 4~ I = 8~ I = 12~ I = 16~

.50 3.82 2.78 2.13 4.16 3.63
1.00 4.81 5.94 5.20 7.06 7.63
1.50 8.29 9.28 12.13 11.87 11.87
2.00 12.87 15.46 12.87 14.57 15.44
2.50 17.18 15.82 16.81 17.99 18.98
3.00 20.29 21.16 19.93 23.67 22.68
3.50 22.25 23.14 23.88 25.53 25.65
4.00 25.99 26.49 27.35 29.23 28.93
4.50 29.21 29.45 30.57 32.05 31.63
5.00 33.16 33.16 33.79 34.90 34.60
5.50 36.51 36.51 36.87 37.61 37.61
6.00 39.72 39.72 39.72 40.43 40.43
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TABLE VI

The CV (I, T ) as a function of angular momentum and temperature for 28Si.

T [MeV] Specific heat CV

I = 0~ I = 4~ I = 8~ I = 12~ I = 16~

.50 2.77 1.13 2.34 4.06 3.78
1.00 6.32 6.53 6.74 8.17 7.63
1.50 9.50 12.47 11.30 12.17 12.17
2.00 14.44 22.18 16.61 16.28 16.58
2.50 24.56 22.34 20.38 19.98 20.28
3.00 28.70 20.96 22.76 23.97 24.09
3.50 24.73 24.14 25.73 27.36 27.67
4.00 27.91 28.28 28.12 30.91 31.21
4.50 31.88 31.67 33.05 34.60 34.60
5.00 35.61 35.44 36.61 37.46 37.46
5.50 39.30 39.34 40.03 40.73 40.43
6.00 42.27 42.46 43.27 43.01 43.29

TABLE VII

The CV (I, T ) as a function of angular momentum and temperature for 30Si.

T [MeV] Specific heat CV

I = 0~ I = 4~ I = 8~ I = 12~ I = 16~

.50 3.51 2.72 3.18 5.05 2.72
1.00 7.29 7.43 7.62 8.62 7.83
1.50 12.12 12.81 12.45 13.11 12.94
2.00 16.62 20.94 18.89 17.76 17.60
2.50 20.79 23.21 19.92 22.12 21.96
3.00 30.46 23.91 24.24 25.99 25.82
3.50 27.20 26.51 27.53 29.23 29.07
4.00 30.19 30.19 31.88 33.42 32.97
4.50 33.77 33.77 35.04 36.83 36.83
5.00 38.22 38.22 40.59 41.65 40.57
5.50 41.88 41.88 42.36 43.48 43.48
6.00 45.44 45.44 45.54 46.43 46.43

Figures 3 (b) and 4 (b) illustrate the results of level density calculations
with a slight change around the critical temperature for all the seven nuclei.
One can clearly see that the slender change in the level density coincides
with the peaks in the specific heat at the higher temperature. Thus, the
peaks in the specific heat in all cases are the result of the changes in the
many body level density around the critical temperature [56].
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Fig. 5. (a) The nuclear specific heat CV as a function of temperature T and angular
momentum I for 20Ne. (b) The nuclear level density ρ as a function of temperature
and angular momentum for 20Ne.
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Fig. 6. (a) As in Fig. 5 (a) for 22Ne. (b) As in Fig. 5 (b) for 22Ne.
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Fig. 7. (a) As in Fig. 5 (a) for 24Ne. (b) As in Fig. 5 (b) for 24Ne.
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Fig. 8. (a) As in Fig. 5 (a) for 24Mg. (b) As in Fig. 5 (b) for 24Mg.
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Fig. 9. (a) As in Fig. 5 (a) for 26Mg. (b) As in Fig. 5 (b) for 26Mg.
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Fig. 10. (a) As in Fig. 5 (a) for 28Si. (b) As in Fig. 5 (b) for 28Si.
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Fig. 11. (a) As in Fig. 5 (a) for 30Si. (b) As in Fig. 5 (b) for 30Si.
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Figures 5 (a) to 11 (a) show the dependence of angular momentum and
temperature on specific heat and Figs. 5 (b) to 11 (b) show the corresponding
level density calculations for all the seven nuclei independently. The effect of
angular momentum on specific heat and level density is very well pronounced
at low temperatures. This is clearly shown in Fig. 8 for 24

12Mg at different
angular momentum states. As the angular momentum increases beyond 8~,
the peak occurs at critical temperature between I = 0~ and 8~ vanishes.
Similar effects are observed in all the other light nuclei. The specific heat
values are different for different angular momentum states of the nuclei at
high temperatures.

The incidence of a bump in the specific heat may be due to a nuclear
structure effect leading to a phase transition. Comparable structures are
seen in specific heat which strengthens the fact that such phase transitions
do occur [17]. Additionally, the critical temperature is predicted outstand-
ingly well in finite temperature mean field calculations even in small model
spaces [56]. Such transitions are interpreted as thermal excitations from
collective to non-collective portions of the nuclear spectrum. As the system
heats up, it has a tendency to become less deformed on average and at a
specific critical temperature it experiences a deformed to spherical phase
transition. Therefore, it is evident that the occurrence of the peak in the
specific heat with the high temperature contribution of the ground state
rotational band is associated with a deformed to spherical phase transition.

This work is supported by a project (No. 2012/37P/37/BRNS/2017)
sanctioned under the Department of Atomic Energy Board of Research in
Nuclear Science, India.
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