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The paper addresses the dynamics of shallow water waves that are
governed by the Gardner equation, that is a generalized version of the
well-known Korteweg–de Vries equation. Exact solutions are obtained in
presence of shoaling and advection terms with power law nonlinearity. The
paper integrates the equation by the aid of G′/G-expansion method. This
approach reveals singular soliton as well as shock wave solutions to the
model. The solution existence criteria, also known as constraint conditions,
are also displayed.
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1. Introduction

The dynamics of shallow water waves is an important area of research
in oceanography [1–25]. There are several models that describe this kind of
dynamics. A few of them are the Korteweg–de Vries (KdV) equation [2],
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modified KdV (mKdV) equation [2], Boussinesq equation [6], Perergrine
equation [12], Kawahara equation [21], Benjamin–Bona–Mahoney equation
[22], Rosenau–KdV equation [7, 10], Rosenau–RLW equation [18] and sev-
eral others. However, for two-layered shallow water waves, the models that
are commonly studied are the Gear–Grimshaw model [4], Bona–Chen equa-
tion [5], coupled Boussinesq equation [14] and many others. Another model
that is also considered and studied at times is the Gardner equation (GE)
it is a combination of KdV and mKdV equation [1, 3, 8, 16, 20]. Therefore,
occasionally, GE is referred to as the KdV–mKdV equation. This paper
will address the GE on a generalized setting when the nonlinear terms are
generalized to an arbitrary power law nonlinearity. The relevance of the
equations enumerated here is that all of these models are studied with weak
nonlinearity.

The importance of studying GE is the strong nonlinearity that cannot
be modeled with KdV equation or its types as mentioned before, since these
equations are valid for small nonlinearity. This fact was experimentally
observed in 1995 in Oregon Bay. In fact, it was concluded from these ex-
perimental observations that Gardner’s equation models deep ocean waves
rather than shallow water waves that is governed by KdV equation [2].

In order to keep it on a further generalized flavor, the coefficients of
nonlinearity, dispersion, shoaling and advection are all taken to be time-
dependent so that the scenario is as close to reality as possible. The integra-
bility aspect of the equation will be the focus of this paper. The retrieval of
the soliton solution will be a combination of the symbolic computation and
the auxiliary equation approach. This combined approach will lead to soli-
tary waves and singular soliton solutions. There are the necessary constraint
conditions that will naturally fall out of these calculations.

2. Governing equation

The dimensionless form of the GE that is studied in ocean sciences is
given by [3, 8, 16, 20]

ut + 2auux − 3bu2ux + uxxx = 0 . (1)

Our interest is focused on the GE with nonlinear terms of any order, most
importantly, when all coefficients vary with respect to time

ut + α (t)u+
[
β(t) + γ1(t)u

n + γ2(t)u
2n
]
ux + δ(t)uxxx = 0 , (2)

where α(t), β(t), γ1(t), γ2(t) and δ(t) are arbitrary functions of the time
variable t.
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In (2), the first term represents the linear evolution term, the second
term is the linear damping, also known as shoaling, while the third term
is the advection term. The terms related to the coefficients γ1(t) and γ2(t)
represent the nonlinear terms of any order, and the last term is the third
order dispersion. Here, n is the index of power law nonlinearity.

The model equation (2) applies to the description of weakly nonlinear
and weakly dispersive wave propagation in inhomogeneous media. Note
that the simplest case when all coefficients in Eq. (2) are constant with
α = β = 0 and δ = 1 has been well studied [1, 3, 8, 16, 20]. In this
paper, we have studied temporally inhomogeneous GE. In general, (2) is not
integrable, for any arbitrary n, by the standard method of integrability of
the nonlinear evolution equations, namely the inverse scattering transform
that is the nonlinear analog of Fourier transform. These special solutions
may play an important role in the research of some physical phenomena
arising in nonlinear systems described by GE.

3. Soliton solutions

First, we introduce the following transformation

u(x, t) = v
1
n (x, t) . (3)

After substituting (3) into (2) and simplifying, (2) is reduced to

n2v2vt + αn3v3 + βn2v2vx + γ1n
2v3vx + γ2n

2v4vx

+δ
{
(1− n) (1− 2n) v3x + 3n (1− n) vvxvxx + n2v2vxxx

}
= 0 . (4)

Balancing v4vx with v3x in (4) gives

4M +M + 1 = 3(M + 1) (5)

so that M = 1. Accordingly, we adopt the ansatz, with a modification for
the solution to (4), as follows

v = f + g1ϕ(ξ) , (6)
ξ = p(t)x+ q(t) , (7)(

dϕ

dξ

)2

= q4ϕ
4 + q3ϕ

3 + q2ϕ
2 + q1 , (8)

where q1, q2, q3 and q4 are constants, and f = f(t), g1 = g1(t), p = p(t) and
q = q(t) are functions of t, which are unknown and to be further determined.
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Substituting (6) into (4) along with (8), collecting the coefficients of ϕ0,
ϕ1, ϕ2, ϕ3 and ϕiϕ′ to zero, where i = 0, 1, 2, 3, 4, and setting them to zero
we get the following set of coupled differential equations for f , g1, p and q:

ϕ0 : f2
(
f ′ + αnf

)
= 0 , (9)

ϕ1 :
(
f2g1

)′
+ 3αnf2g1 = 0 , (10)

ϕ2 :
(
fg21
)′
+ 3αnfg21 = 0 , (11)

ϕ3 : g21
(
g′1 + αng1

)
= 0 , (12)

ϕ′ : n2f2g1
(
p′x+ q′

)
+ βn2f2g1p+ γ1n

2f3g1p+ γ2n
2f4g1p

+δ (1− n) (1− 2n) g31p
3q1 + δn2f2g1p

3q2 = 0 , (13)

ϕϕ′ : 2n2fg21
(
p′x+ q′

)
+ 2βn2fg21p+ 3γ1n

2f2g21p+ 4γ2n
2f3g21p

+3δn (1− n) fg21p3q2 + 3δq3n
2f2g1p

3 + 2δq2n
2fg21p

3 = 0 , (14)

ϕ2ϕ′ : n2g31
(
p′x+ q′

)
+ βn2g31p+ 3γ1n

2fg31p+ 6γ2n
2f2g31p ,

+δ (1− n) (1− 2n) g31p
3q2 +

9
2q3δn(1− n)fg

2
1p

3

+3q2δn(1− n)g31p3 + 6q4δn
2p3f2g1

+6q3δn
2fg21p

3 + q1g
3
1δn

2p3 = 0 , (15)

ϕ3ϕ′ : γ1n
2g41p+ 4γ2n

2fg41p+ δ (1− n) (1− 2n) q3g
3
1p

3

+6n(1− n)δq4fg21p3 + 9
2n(1− n)δq3g

3
1p

3

+3δn2q3g
3
1p

3 + 12q4δn
2fg21p

3 = 0 , (16)

ϕ4ϕ′ : γ2n
2g51p+ δg31p

3q4 (n+ 1) (2n+ 1) = 0 , (17)

where prime denotes the differential with respect to the variable t. These
nine equations can be solved for seven unknowns to give for q1 = 0:

f(t) = k1e
−n
∫
α(t)dt , (18)

g1(t) = k2e
−n
∫
α(t)dt , (19)

p(t) =

√
γ2(t)

δ(t)
k3e
−n
∫
α(t)dt , (20)

q2 =
nk21

12k23 (2n+ 1)
, q3 =

−n2k1k2
2k23 (5n+ 2) (2n+ 1)

,

q4 =
−n2k22

k23 (n+ 1) (2n+ 1)
, (21)
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and

q(t) =

∫
dt

{
nα(t)x− β(t)− 4k1

3
γ1(t)e

−n
∫
α(t)dt

−5k21
3
γ2(t)e

−2n
∫
α(t)dt − k21

12(2n+ 1)
γ2(t)e

−2n
∫
α(t)dt

+
n2k21

2(5n+ 2)(2n+ 1)
γ2(t)e

−2n
∫
α(t)dt

}√
γ2(t)

δ(t)
k3e
−n
∫
α(t)dt , (22)

where k1, k2 and k3 are arbitrary constants with k3 6= 0, along with a con-
straining relation

f(t) =
q3
4q4

g1(t)−
(2n+ 1)γ1(t)

2(n+ 2)γ2(t)
. (23)

Given the results for f(t) and g1(t), the constrained relation yields

γ1(t)e
n
∫
α(t)dt

γ2(t)
=

(q3k2 − 4q4k1) (n+ 2)

2q4(2n+ 1)
(24)

which means that the time-varying parameters α(t), γ1(t) and γ2(t) are not
independent and the existing solutions are obtained in the framework of this
relationship.

Returning to the auxiliary ordinary differential equation (8), one can see
that it has the following exact solutions for q1 = 0:
Case 1: If q2 > 0:

ϕ(ξ) =
−q2q3 sech2

(
±
√
q2
2 ξ
)

q23 − q2q4
(
1− tanh

(
±
√
q2
2 ξ
))2 , (25)

Case 2: If q23 − 4q2q4 > 0, q2 > 0:

ϕ(ξ) =
2q2 sech

(√
q2ξ
)√

q23 − 4q2q4 − q3 sech
(√
q2ξ
) , (26)

Case 3: If q2 = 4, q3 = −4(2b+d)
a , q4 = c2+4b2+4bd

a2
:

ϕ(ξ) =
a sech2ξ

b sech2ξ + c tanh ξ + d
, (27)

where a, b, c and d being arbitrary constants. In addition to the above
solutions, we have found other soliton-like solutions to Eq. (8) for q1 = 0 as
follows:
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Case 4: If 4q2q4 − q23 > 0, q2 > 0:

ϕ(ξ) =
−2q2

q3 +
√

4q2q4 − q23 sinh
(√
q2ξ
) , (28)

Case 5: If q23 − 4q2q4 > 0, q2 > 0:

ϕ(ξ) =
−2q2 sech2

(√
q2
2 ξ
)

2
√
q23 − 4q2q4 −

(√
q23 − 4q2q4 − q3

)
sech2

(√
q2
2 ξ
) . (29)

In order to construct the explicit soliton-like solutions for the generalized
KdV–mKdV equation with variable coefficients (2), we substitute one of the
solutions ϕ(ξ) given in (25)–(29) into (6) and the result in (3) as follows:
Type 1: From (3), (6), (7) and Case 1, we can obtain the following soliton-
like solutions for Eq. (2):

u =

k1e−n
∫
α(t)dt−k2e−n

∫
α(t)dt

 q2q3 sech
2
(
±
√
q2
2 ξ
)

q23−q2q4
(
1−tanh

(
±
√
q2
2 ξ
))2



1
n

, (30)

ξ = p(t)x+ q(t) , (31)

where the soliton parameters p(t) and q(t) are given by (20) and (22), k1,
k2 and k3 are arbitrary constants, k3 6= 0 and q2 > 0.
Type 2: From (3), (6), (7) and Case 2, we get a soliton-like solution of the
form:

u =

{
k1e
−n
∫
α(t)dt+k2e

−n
∫
α(t)dt

[
2q2 sech

(√
q2ξ
)√

q23−4q2q4−q3 sech
(√
q2ξ
)]} 1

n

, (32)

ξ = p(t)x+ q(t) , (33)

where the soliton parameters p(t) and q(t) are given by (20) and (22), k1,
k2 and k3 are arbitrary constants, k3 6= 0, q23 − 4q2q4 > 0 and q2 > 0.
Type 3: From (3), (6), (7) and Case 3, we have a soliton-like solution for
Eq. (2) given by:

u =

{
k1e
−n
∫
α(t)dt + k2e

−n
∫
α(t)dt

[
a sech2ξ

b sech2ξ + c tanh ξ + d

]} 1
n

, (34)

ξ = p(t)x+ q(t) , (35)

where the soliton parameters p(t) and q(t) are given by (20) and (22), a, b,
c and d are arbitrary real constants. k1, k2 and k3 are arbitrary constants,
k3 6= 0.
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Type 4: From (3), (6), (7) and Case 4, we can obtain the following soliton-
like solutions for Eq. (2):

u =

{
k1e
−n
∫
α(t)dt−k2e−n

∫
α(t)dt

[
2q2

q3+
√
4q2q4−q23 sinh

(√
q2ξ
)]} 1

n

, (36)

ξ = p(t)x+ q(t) , (37)

where the soliton parameters p(t) and q(t) are given by (20) and (22), k1,
k2 and k3 are arbitrary constants, k3 6= 0, 4q2q4 − q23 > 0 and q2 > 0.
Type 5: From (3), (6), (7) and Case 5, we can obtain the following soliton-
like solutions for Eq. (2):

u =
{
k1e
−n
∫
α(t)dt − k2e−n

∫
α(t)dt

×

 2q2 sech
2
(√

q2
2 ξ
)

2
√
q23 − 4q2q4 −

(√
q23 − 4q2q4 − q3

)
sech2

(√
q2
2 ξ
)


1
n

, (38)

where

ξ = p(t)x+ q(t) (39)

and the soliton parameters p(t) and q(t) are given by (20) and (22), k1, k2
and k3 are arbitrary constants, k3 6= 0, q23 − 4q2q4 > 0 and q2 > 0.

4. Application of the G′/G-expansion method to GE with
time-dependent coefficients

In this section, we will apply the G′/G-expansion method [19, 23] to
handle the generalized form of the Gardner equation with time-dependent
coefficients. It must be noted that this is a powerful integration scheme
that was first reported in the previous decade. A detailed description of
this integration algorithm is given in details when it was first reported in
2008 [19, 23]. This method will be applied to GE with time-dependent
coefficients given by

ut +
(
a(t) + b(t)un + c(t)u2n

)
ux + uxxx = 0 . (40)

The traveling wave transformation

u(x, t) = U(ξ) , ξ = x− v(t)t , (41)
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transforms the Eq. (40) to the following ODE

−
(
v(t) + t

dv(t)

dt

)
U ′ +

(
a(t) + b(t)Un + c(t)U2n

)
U ′ + U ′′′ = 0 , (42)

where the prime denotes the differential with respect to ξ.
Integrating Eq. (42) once, and considering the zero constant for integra-

tion, we have(
a(t)− v(t)− tdv(t)

dt

)
U +

b(t)

n+ 1
Un+1 +

c(t)

2n+ 1
U2n+1 + U ′′ = 0 . (43)

Balancing U ′′ with U2n+1 gives

N + 2 = (2n+ 1)N ⇔ N + 2 = 2nN +N ⇔ N =
1

n
.

We then assume that Eq. (43) has the following formal solutions:

U(ξ) = B

(
G′

G

) 1
n

, B 6= 0 , (44)

where B is a constant to be determined later and the function G(ξ) is the
solution of the auxiliary linear ordinary differential equation

G′′(ξ) + λG′(ξ) + µG(ξ) = 0 , (45)

where λ and µ are real constants to be determined. Therefore, we have

U ′ = − 1

n
B

(
G′

G

) 1
n
+1

− 1

n
Bλ

(
G′

G

) 1
n

− 1

n
Bµ

(
G′

G

) 1
n
−1

, (46)

U ′′ =

(
1

n2
+

1

n

)
B

(
G′

G

) 1
n
+2

+

(
2

n2
+

1

n

)
Bλ

(
G′

G

) 1
n
+1

+

(
2

n2
Bµ+

1

n2
Bλ2

)(
G′

G

) 1
n

+

(
2

n2
− 1

n

)
Bµλ

(
G′

G

) 1
n
−1

+

(
1

n2
− 1

n

)
Bµ2

(
G′

G

) 1
n
−2

. (47)

Substituting Eqs. (44)–(47) into Eq. (43) and collecting all terms with the
same order of G′/G together, we convert the left-hand side of Eq. (43) into
a polynomial in G′/G. Setting each coefficient of each polynomial to zero,
we derive a set of algebraic equations for λ, µ, v(t) and B:
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G′

G

) 1
n
+2

coeff.:

c(t)

2n+ 1
B2n+1 +

(
1

n2
+

1

n

)
B = 0 ,

(
G′

G

) 1
n
+1

coeff.:

b(t)

n+ 1
Bn+1 +

(
2

n2
+

1

n

)
Bλ = 0 ,

(
G′

G

) 1
n coeff.:(

a(t)− v(t)− tdv(t)
dt

)
B +

(
2

n2
µ+

1

n2
λ2
)
B = 0 ,

(
G′

G

) 1
n
−1

coeff.: (
2

n2
− 1

n

)
Bµλ = 0 ,

(
G′

G

) 1
n
−2

coeff.: (
1

n2
− 1

n

)
Bµ2 = 0 . (48)

The solution of the above system is

B =

(
−(n+1)(2n+1)

c(t)n2

) 1
2n

, µ = 0 , λ = −

√
− n2b2(t)(2n+1)

c(t)(n+1)(n+2)2
,

v(t) =
1

t

∫ {
a(t′)− (2n+ 1)b2(t′)

(n+ 1)(n+ 2)2c(t′)

}
dt′ . (49)

From Eqs. (41), (44), (45) and (49), we obtain the exact traveling wave so-
lution of the generalized form of the Gardner equation with time-dependent
coefficients

u(x, t) =

{
−b(t)(2n+ 1)

c(t)(n+ 2)

× c2e

√
− n2b2(t)(2n+1)

c(t)(n+1)(n+2)2

(
x−
∫ {

a(t′)− (2n+1)b2(t′)
(n+1)(n+2)2c(t′)

}
dt′
)

c1 + c2e

√
− n2b2(t)(2n+1)

c(t)(n+1)(n+2)2

(
x−
∫ {

a(t′)− (2n+1)b2(t′)
(n+1)(n+2)2c(t′)

}
dt′
)


1
n

, (50)

where c1 and c2 are arbitrary constants.
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Equation (50) is a new type of exact traveling wave solution to the gener-
alized form of the Gardner equation with time-dependent coefficients. Espe-
cially, if we choose c1 = c2 in (50), we obtain the solitary wave solution of the
generalized form of the Gardner equation with time-dependent coefficients,
namely

u(x, t) =

{
−b(t)(2n+ 1)

2c(t)(n+ 2)

(
1 + tanh

[√
− n2b2(t)(2n+ 1)

4c(t)(n+ 1)(n+ 2)2

×
(
x−

∫ {
a
(
t′
)
− (2n+ 1)b2 (t′)

(n+ 1)(n+ 2)2c(t′)

}
dt′
)])} 1

n

, (51)

and

u(x, t) =

{
−b(t)(2n+ 1)

2c(t)(n+ 2)

(
1 + coth

[√
− n2b2(t)(2n+ 1)

4c(t)(n+ 1)(n+ 2)2

×
(
x−

∫ {
a
(
t′
)
− (2n+ 1)b2(t′)

(n+ 1)(n+ 2)2c(t′)

}
dt′
)])} 1

n

. (52)

These are shock wave and singular soliton solution respectively.

5. Conclusions

This paper thus addressed the soliton solutions of the GE with power
law nonlinearity in presence of time-dependent coefficients of shoaling, ad-
vection, nonlinearity and dispersion. The solution structure in each of the
cases clearly indicate that the shoaling is a purely dissipative term and,
therefore, the solitons will dissipate for α(t) > 0. These results are very
promising for further research and stands on a strong footing for further
extension. In future, there are several other perturbation terms that will be
taken into consideration such as higher order dispersion, higher order stabi-
lization, just to name a few. These perturbed GE models will be analyzed
in future using this tool as well as various other mathematical tools, such as
Lie symmetry analysis, variational iteration method, exp-function approach
and several others. Additionally, the stochastic perturbation terms will be
taken into consideration that will lead to the Langevin equation which will
be integrated in order to obtain the mean free velocity of the solitary wave.
These results will be all declared in future publications.
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