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The neural assemblies undergo spontaneous changes between various
dynamical states characterized usually by spiking or bursting at a single
neuron level. These microscopic states contribute to a global neural dy-
namics that may be measured in a form of electric signal referred to as a
local field potential. Here, we present a model neural network composed
with nodes exhibiting autonomous spiking dynamics. We show that under a
particular coupling configuration and slight mismatches between the nodes,
the neural network exhibits deterministic transitions between two possible
configurations of clusters. The clusters, composed of two neurons each,
differ in internal (always chaotic) dynamics as well as in synchronization
properties. Such clusters features may contribute to a temporal increase or
decrease of local field potential in the neural network, and thus give an in-
sight into the possible mechanisms of the spontaneous brain transitions. We
consider two different models for nodes, namely, forced FitzHugh–Nagumo
equations and Rulkov map, and show that the presented results are node-
type independent. Finally, we propose a mechanism explaining the origin
of these transitions.
DOI:10.5506/APhysPolB.45.1157
PACS numbers: 05.45.–a, 05.45.Xt

1. Introduction

The study of spontaneous or induced brain activity [1] is accessed exper-
imentally mainly through measurements of electric activity. The sleep/wake
state is a spontaneous circadian rhythm, following the endogenous clock that
adjust to the external environment. According to the experimental obser-
vations [2], the dynamics of neural assemblies undergoes a transition from
irregular unsynchronized spiking to synchronized bursting and vice versa.
While the underlying mechanism of such transitions is still not well un-
derstood, there are many mathematical models proposed to explain this
phenomenon (e.g. Refs. [3, 4]). In particular, they highlight the crucial role
of the spike time dependent plasticity in the transitions.
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On the other hand, there are also indirect strategies used to study of how
the brains work, namely, through psychophysical experiments. A represen-
tative case is perceptual bistability, a phenomenon appearing in response to
exposure to ambiguous figures like Necker cube [5] or to non-stationary am-
biguous motion displays [6]. It consists of an alternate perception over time
between two possible percepts in an irregular manner. Various mathemat-
ical models have been proposed to explain this phenomenon. The simplest
model considers neuronal populations in which the alternations are gener-
ated with perfect periodicity due to a competition process [7]. However, the
data obtained in psychophysical experiments show that these alternations
have rather irregular durations [8]. The first hypothesis that the alternations
may be mediated by noise was provided by Haken [9]. Many models based
on this idea have been proposed, where the switching processes between the
two attractors present in a network were elicited by noisy fluctuations [10].
It was demonstrated that the noise-based models reproduce well the main
characteristics observed in experiments. On the other side, the existence of
a high-dimensional dynamics in neural activity gives a cue that the deter-
ministic processes alone could contribute as well to the emergence of this
phenomenon. In fact, there are many experimental data that confirm the
existence of complex deterministic dynamics in the brain [11].

In this paper, we propose possible dynamical mechanisms for auton-
omous switching during mental processes, based on chaos-generating systems
coupled in a small network. The network includes direct couplings, both in-
hibitory and excitatory. We show that in a certain range of the coupling
parameters, such a network undergoes bistable behaviour. In particular, we
observe the emergence of two clusters exhibiting independent chaotic dy-
namics, which differ in the mean frequency and degree of correlation. These
differences in the microscopic dynamics of clusters contribute to various
local field potentials (LFPs). In the case of identical systems, the transi-
tions between the bistable states may be elicited by applying an external
stimulus [12]. Here, we show that introducing slight parameter mismatches
between the nodes, the transition may emerge spontaneously without any
external influences from deterministic or stochastic sources. We consider two
types of nodes, FitzHugh–Nagumo systems driven with periodic forcing [13]
and Rulkov map [14] showing that the phenomenology does not depend on
the node type.

2. Model of a network

The network is composed with two inhibitory and two excitatory neurons
coupled in a ring configuration (see Fig. 1 (a)). The coupling term ∆xi for
the nodes i = 1, 2, 3, 4 is defined as follows:
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∆x1,3 = x4 − x2 ,
∆x2,4 = x1 − x3 . (1)
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Fig. 1. (a) Scheme of the neural network with inhibitory (circles) and excitatory
(arrows) connections in a ring configuration. (b) The raster plot for four coupled
FHN systems obtained from the numerical simulations for K = 2.1 and ∆a =

2×10−4. Each horizontal line marks the appearance of a spike in time at each site.

We consider two different kinds of systems as nodes. First, we concen-
trate on driven FHN system [15] that is ruled by the following equations:

ẋi = xi − x3i /3− yi + F +K∆xi ,

ẏi = β(a+ ∆ai − byi + xi) , (2)

where xi is the fast variable, yi is the recovery variable, for i = 1, 2, 3, 4.
F = A sin(2πνt) is an external driving term with amplitude A and frequency
ν = 1/T , K is the coupling strength. The coupling term K∆xi is composed
of excitatory (+Kxj) and inhibitory (−Kxk) links (see Eq. (1)), that are
distinguishable by a sign. The external forcing allows to obtain chaotic
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spiking dynamics, since by introducing a new variable zi = 2πνt = ωt,
Eq. (2) may be transformed to a three-variable set of equations. We consider
fixed parameters β = 0.08, b = 0.8 and a = 0.7. The mismatches are
introduced through the mismatch parameter ∆ai. The second type of the
systems we consider is a Rulkov map [14], defined as follows:

xin+1 = f
(
xin, y

i
n

)
+K∆xin ,

yin+1 = yin − µ
(
xin + 1

)
+ µσn , (3)

where n marks a discrete time and i = 1, 2, 3, 4 marks the ith system. Func-
tion f is the following:

f(x, y) =

 αi/(1− x) + y , x ≤ 0
αi + y , 0 < x < αi + y
−1 , x ≥ αi + y

 . (4)

We use the parameters µ = 10−3 and σ = 0.16. The parameter αi =
α + ∆αi, where α = 4.6 and ∆αi is a control parameter used to introduce
the mismatches into the network. Parameter K, also in this case, is the
coupling strength.

Both selected systems, in a certain range of control parameters, exhibit
chaotic spiking dynamics, e.g. they elicit high amplitude spikes separated
by irregular (chaotic) time intervals.

3. Results

The formation of synchronized clusters is observed when the proper cou-
pling strength and mismatches are selected. The bistable switching occurs
for the pairs of exhibitory–inhibitory neurons, which we call clusters. In
Fig. 1 (b) we show the raster plots for the FHN system in the regime of au-
tonomous switching between the two clusters. We estimate the correlation
between the sites by using the Kuramoto order parameter [16]

R(t) =
1

M

M∑
k=1

|exp(iθk(t))| , (5)

whereM is the number of nodes and θ(t) is the phase of each node at time t
calculated from the following formula:

θ(t) = 2π(t− sprev)/(s− sprev) , (6)

where s is the time of spike occurrence and sprev is the time of spike occur-
rence previous to s.
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The parameter R varies from 0 to 1, indicating low and high correlations,
respectively. We consider the mean of R in time, calculated over properly
selected time intervals much smaller than the magnitude of the dominance
times (residence times in the R = 1 state). Then, we introduce a threshold in
order to separate temporal intervals for the full synchronization (at R = 1)
and for uncorrelated dynamics (for R < 1). In Fig. 2 (a) we show the time
evolution of 〈R〉 and in Fig. 2 (b) the corresponding rates for spiking. We
observe that the crucial difference between the two formed clusters is not only
in the degree of synchronization, but also in the mean frequency of chaotic
spiking. As shown in Fig. 2 (a)–(b), one cluster dominates temporally over
the other through the higher mean frequency and correlations, and thus
contributes to higher values of LFP. We define LFP as a sum of spikes (action
potentials) which appear during a certain period of time ∆t. If there are no
spikes during this period then LFP = 0, otherwise, if all neurons fire, the
value of LFP reaches its maximum.
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Fig. 2. (a) Mean Kuramoto parameter 〈R〉 versus time. (b) Rate versus time. The
solid and dashed lines are for the two clusters, respectively. The horizontal double
arrows show the temporal period for which the raster plot from Fig. 1 has been
plotted.

We initially choose the mismatches between the systems such that ∆a1 =
∆a4 = ∆a and ∆a2 = ∆a3 = 0, thus the mismatches are introduced sym-
metrically into the network. In such a case, the distributions of dominance
durations for given cluster are exponential (see Fig. 3 (a)) and so we con-
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sider the curve defined as p ∼ exp(−γTd), where Td stands for dominance
duration. The exponents γ are calculated using numerical data fitted to
the curve log(p) ∼ −γTd with the method of ordinary least squares. The
exponents in the case of both formed clusters are the same. As the value
of mismatch ∆a increases, the value of γ decreases. It means that larger
mismatches contribute to the faster exchange in clusters domination. Also,
the synchronization without switching between the states is reached at the
lower value of K in the case of smaller γ. In Fig. 3 (b) it can be noticed that
there is a range of coupling strengths K in between the de-synchronization
and synchronization regimes, where the autonomous switching is possible.
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Fig. 3. (a) Selected distributions for dominance durations. (b) Exponents γ for
varying coupling parameter K at fixed mismatches ∆a. The vertical arrow marks
the coupling strength at which the distributions in (a) are plotted. In the case of
∆a = 2× 10−4, the synchronization is reached approximately at K = 2.1.

Introducing more mismatches between the sites such that all ∆ai 6= 0,
the exponents for given clusters differ from each other (see Fig. 4 (a)–(b)),
e.g. γ1 < γ2 (or γ1 > γ2 —depending on the mismatch values). It means that
during the transitions, one cluster dominates stronger over the other cluster,
maintaining longer residence times in a synchronized state. This appear
again, in a certain range of coupling parameter K, before the transition to
synchronization occurs.

Finally, we replace the FHN nodes with the Rulkov map set in a chaotic
spiking regime (see Fig. 5 (a)). In this case, chaotic spiking has a bursting
form that is conserved during the transitions. However, the mean spike
frequency inside the bursts increases significantly during the synchronized
states. Also in this case, we observe similar phenomenology regarding the
spontaneous transitions and the behaviour of the Kuramoto parameter in
time (see Fig. 5 (b)).



Spontaneous Transitions in Deterministic Networks 1163

200 400 600 800 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Dominance duration

p

(a)

 

 
Cluster 1
Cluster 2

200 400 600 800 1000
10

−4

10
−3

10
−2

10
−1

Dominance duration

L
o
g
(p

)

(b)

 

 

γ = 4 × 10−3

γ = 8 × 10−3

Fig. 4. An example of the network with mismatches such that all ∆ai 6= 0. (a) Dis-
tribution of dominance durations for the two formed clusters. (b) Estimation of
the exponent γ.

The mechanism of the spontaneous transitions is related to the casual
synchronization of spikes in the de-synchronized state. In other words, sin-
gle coincidences may generate the avalanches of synchronously firing spikes.
When the spikes at two sites, say x1 and x3, casually coincide, this induces
a lowering of the coupling term feeding x2 and x4, thus causing their tem-
poral de-synchronization. Consequently, x1 and x3 experience an increase
of the coupling term and thus of the switching probability. The casuality of
coincidences explains the exponential nature of the transitions.
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Fig. 5. (a) Raster plot for the network components composed with chaotic Rulkov
map. (b) Mean R versus time. The horizontal double arrow shows the temporal
period for which the raster plot in (a) has been plotted.

4. Conclusions

We proposed a simple network composed of chaos generating systems
coupled through inhibitory and excitatory connections. The autonomous
transitions are due to the existence of bistability in a network and due to the
introduction of mismatches between the nodes. We observed the emergence
of two clusters that undergo independent chaotic dynamics characterized by
different mean spiking frequency and different degree of correlation. Only
one cluster is synchronized at a given time. Due to these differences one
cluster dominates over the other and contributes stronger to LFP, leading
consequently to the strengthening of a given state. This observation from
our simple toy model could give some insights into the mechanisms gov-
erning the autonomous transitions between mental states in the brain. In
fact, many physical models describe the synchronization of high frequency
synchronized neuronal activity as the coordinating mechanism for feature
binding [17], whereby spatially segregated processing areas are bounded to-
gether to provide a coherent percept. Finally, we proposed the casual ap-
pearance of coincident spikes during de-synchronized state as a mechanism
of the dynamical transition between the states.
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