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To the memory of my longtime friend and colleague, Prof. Dr. Jochem Fleischer, who
recently passed away. The one-loop on-shell versus MS matching conditions used in
the present work we have worked out together more than 30 years ago.

The discovery of the Higgs by ATLAS and CMS at the LHC not only
provided the last missing building block of the electroweak Standard Model,
the mass of the Higgs has been found to have a very peculiar value, about
126 GeV, which is such that vacuum stability may be extending up to the
Planck scale. We emphasize the consequences for the running masses and
we reconsider the role of quadratic divergences. A change of sign of the
coefficient of the quadratically divergent terms, showing up at about µ0 ∼
1.4×1016 GeV, may be understood as a first order phase transition restoring
the symmetric phase in the early universe, while its large negative values
at lower scales trigger the Higgs mechanism. Running parameters evolve in
such a way that the symmetry is restored two orders of magnitude below
the Planck scale. As a consequence, the electroweak phase transition takes
place near the scale µ0 much closer to the Planck scale than anticipated so
far. The SM Higgs system and its phase transition plays a key role for the
inflation of the early universe. Dark energy triggering inflation is provided
by the huge bare Higgs mass term and a Higgs induced vacuum density in
the symmetric phase at times before the electroweak phase transition takes
place.
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1. Introduction

Evidence strengthens more and more that the new particle discovered
by ATLAS [1] and CMS [2] at the LHC at CERN is the last missing state
required by the Standard Model (SM) of particle physics [3, 4], the Higgs
boson [5]. For the first time the complete SM spectrum is known now. With
its discovery, the mass of the Higgs boson has been established within a nar-
row range such that all SM parameters (except for the neutrino ones) for the
first time are known with remarkable accuracy. One of the interesting conse-
quences is that now we can answer quite reliably the long standing question
where the effective SM parameters evolve when going to highest energies. It
may be no accident that the observed Higgs mass turned out to match expec-
tations from considerations of SM Higgs vacuum stability bounds, addressed
long ago in Ref. [6], for example, and more recently in Refs. [7–19].

Knowing the Higgs mass allows us to say more about the phase struc-
ture of the SM. Commonly, quadratic divergences are considered to bring
the SM into trouble: the hierarchy, fine tuning or naturalness problem. If
one understands the SM as the renormalizable [20] low-energy effective tail
of a system existing at the Planck scale, which exhibits the inverse Planck
length ΛPl = (G)−1/2 ' 1.22 × 1019 GeV (G Newton’s gravitational con-
stant) as a fundamental cutoff1, the relation between bare and renormalized
parameters acquires a direct physical meaning. The low-energy expansion in
the small parameter x = E/ΛPl suggests that only operators of dimension 4
or less are seen at low energies, which means that the low-energy tail is
a local renormalizable effective Lagrangian Quantum Field Theory (QFT).
As energies increase, at some point the first non-renormalizable effective in-
teractions show up: operators of dimension 5 involving fermion fields and
operators of dimension 6 which can be build from bosonic fields or by four-
fermion structures. Dimension 5 operators yield typically a 0.1% effect, a
typical accuracy achieved in many particle physics experiments, at what is
typical for Grand Unified Theory (GUT) scales, namely 1016 GeV. Dimen-
sion 6 operators would yield an effect of similar size at ∼ 3.6 × 1018 GeV.
So we can expect local renormalizable QFT structure to apply up to about
two orders of magnitude below the Planck scale, because the infinite tower
of non-renormalizable operators scaling like xn with n = 1, 2, 3, . . . are irrel-
evant, i.e. they scale down with increasing powers of the inverse cutoff. The
trouble makers are the relevant operators, those which have positive mass
dimension: the mass terms in particular. The latter scale like ΛPl/mf for
fermions and like Λ2

Pl/M
2
b for bosons. As relevant operators, they have to

be tuned in order not to freeze out by acquiring effective masses scaled up
by one or two power in the cutoff for fermions or bosons, respectively. In

1 We will used Planck mass and Planck cutoff synonymous i.e. MPl = ΛPl ≈ 1019 GeV.
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condensed matter physics one would tune, as a typical relevant parameter,
the temperature T to its critical value Tc, in order to let the system built up
long range correlations, known as critical phenomena (see e.g. Ref. [21]). In
particle physics the role of the reduced temperature (T −Tc)/Tc is taken by
the renormalized particle mass, which has to remain small enough in order
the particle is seen in the low-energy spectrum. What is tuning particle
masses in the low-energy effective theory? Symmetries as we know! Chi-
ral symmetry protects the fermion masses, local gauge symmetry protects
the gauge boson masses, their non-vanishing being a consequence of spon-
taneous symmetry breaking. The one exception are scalar masses, which
only can be protected by doubling the states by pairing all SM particles,
supplemented by an additional Higgs doublet, into a supersymmetric exten-
sion. Alternatively, a conformal conspiracy could be at work when the entire
particle content of the SM or an extension of it is such that the fermionic
and bosonic degrees of freedom compensate each other collectively. The well
known example is Veltman’s “Infrared–Ultraviolet Connection” proposed in
Ref. [22] (see also Refs. [23–25]), which noted that the coefficient of the
quadratic divergences could vanish if the sum of properly weighted Higgs,
W and Z boson mass-squares would cancel the top quark mass-square con-
tribution (see below).

One of the key indications that the SM is a low-energy effective theory is
the occurrence of local gauge symmetries. In particular, the non-Abelian lo-
cal symmetries are not symmetries in the usual sense, like global symmetries.
They rather represent a dynamical principle (like the equivalence principle
in gravity) implying a special form of the dynamics. One could call them
“quantum symmetries” as they determine a form of quantum interference
known as gauge cancellations. The latter are well known from processes like
W -pair production in e+e−-annihilation, where three Born level diagrams
conspire to produce large cancellations of terms growing badly with energy
and as a result yield the tamed observable cross section (see e.g. Ref. [26] and
references therein). In fact, a non-Abelian gauge structure is an automatic
consequence of a low-energy expansion: it is the only possible residual inter-
action structure, which is not suppressed by the cutoff (often misleadingly
referred to as “tree unitarity”2 constraint) [27–31]. Note that spin 1 fields
at long distances appear in a natural way via multipole excitations in the
Planck medium [32]. Also anomaly cancellations may be understood as low-
energy conspiracies, the otherwise non-renormalizable terms are suppressed

2 Terms in tree level amplitudes which grow faster with energy than those present in the
renormalizable spontaneously broken Yang–Mills theory are required to be absent,
since, formally, they seem to violate unitarity. In the low energy expansion, these
terms are not absent but suppressed by large factors E/Λ, which are not seen because
the cutoff is very large.
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by inverse powers of the cutoff. The grouping of the SM fermions into fam-
ilies is a consequence of this. For a more general view on the emergence of
the SM, see Refs. [32, 33]. The general set up for the construction of a long
range effective theory is Wilson’s Renormalization Group (RG) [34–37] of
integrating out short distance fluctuations while keeping the infrared tail.
What emerges from Wilson’s RG in the infrared is equivalent to a continuum
quantum field theory RG as we know it from the SM or elsewhere.

While the RG evolution equations in the symmetric phase of the SM
have been known for a long time to two loops, recently also the three loop
results have been calculated in Refs. [11, 12, 14–17, 19] in the MS scheme.
The latter is most suitable for investigating the high-energy behavior of the
SM, which is expected to be represented by the symmetric phase3. The
more critical point is the experimental values of the MS parameters at the
Z boson mass or at the electroweak scale v = 246.22 GeV. Most parameters
are known from “low-energy” experiments obtained in the real world in the
broken phase of the SM, typically in the on-shell renormalization scheme.
The transcription of data from the on-shell to the MS scheme is non-trivial
within the SM because of non-decoupling effects in the weak sector of the
SM at low energies (see e.g. Ref. [38] for a discussion in our context).

Another, maybe more serious, issue which is very different for the elec-
troweak (EW) sector in comparison to massless QCD, is the appearance of
quadratic divergences. They are absent in massless QCD where in the chi-
ral limit only logarithmic divergences show up. In the electroweak part of
the SM, by the fact that spontaneous breaking of the symmetry does not
affect the ultraviolet (UV) properties of the theory, quadratic divergences
show up in the renormalization of the mass parameter m2 of the scalar po-
tential, which in the symmetric phase is given by V = m2

2 φ
2 + λ

24φ
4, where

φ denotes the real scalar Higgs field. The limit m = 0 in the SM is not
protected by any symmetry, the famous naturalness or hierarchy problem.
A non-zero quadratically UV divergent m2-term in the Lagrangian in any
case is induced by renormalization. Besides m2, the U(1)Y and SU(2)L

gauge couplings g′ and g, respectively, the Yukawa couplings yf and the
Higgs self-coupling λ are logarithmically divergent only and their running is
governed by the standard RG equations for dimensionless parameters. This
carries over to the broken phase which represents the low-energy structure
of the SM. The dimensionful parameter m2 transmutes to the Higgs mass
M2
H = 1

3 λv
2=̂2m2 and since λ satisfies a normal RG equation governed by

3 Note that in the symmetric phase where all fields but the Higgses are massless an
S-matrix does not exist, at least in perturbation theory, and correspondingly an
on-shell scheme is not well-defined, because of the “infrared catastrophe”. The MS
parametrization is then a natural parametrization at hand, most tightly related to
the bare parameters.
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logarithmic divergences only, all quadratic divergences must by exhibited by
the Higgs bare vacuum expectation value v0, or, equivalently, in the bare
Fermi constant GF0 = 1/(

√
2v2

0). Since all masses are proportional to v,
all masses are affected by the issue of quadratic divergences. In the bro-
ken phase, the quadratic divergences show up in the tadpole contributions.
Renormalizability guarantees that no other types of UV singularities are in-
duced by renormalization, in other words a renormalizable theory is closed
with respect to dimension d ≤ 4 operators (assuming dimensional counting
within a renormalizable gauge).

If we do not take into consideration supersymmetric extensions of the
SM, which is a possible solution of the naturalness problem, an alternative
possibility within the framework of the SM could be a “conformal conspir-
acy”4 collectively between SM particles: the quadratic divergences can be
absent if SM fermion contributions balance against the bosonic ones [22].
Only the heavier states are relevant numerically. At the one loop level the
quadratic divergences, which in dimensional regularization (DR) show up as
poles5 at D = 2, are known to be given by

δm2
H =

Λ2

16π2
C1 , C1 =

6

v2

(
M2
H +M2

Z + 2M2
W − 4M2

t

)
(1)

modulo small lighter fermion contributions. The condition for the absence of
the quadratic divergences C1 ' 0 for the given top-quark mass would require
a Higgs mass MH ' 314.92 GeV in the one-loop approximation. The two-
loop corrections have been calculated in Refs. [40–42] with the results

C2 = C1 − 2
ln
(
26/33

)
16π2

[(
−36M4

t + 18M2
HM

2
t + 3M4

H + 14/3M2
ZM

2
t

−6M2
ZM

2
H − 87M4

Z − 68/3M2
WM

2
t − 12M2

WM
2
H + 144M2

WM
2
Z

−120M4
W

)
/v4 + 32g2

3M
2
t /v

2
]
. (2)

4 As in the theory of critical phenomena, long distance (low-energy) effective theo-
ries are systematically constructable by applying Wilson’s renormalization group ap-
proach, and mass parameters similar to the temperature in condensed matter physics
have to be tuned to the critical surface in parameter space [32, 39]. The idea is that
the statistical fluctuations at the Planck scale conspire to select modes which are
able to survive as long range correlations (light particles). Natural are conspiracies
involving few fields: singlets, doublets, triplets as they actually appear in the SM.
Note that GUTs are unnatural in such a low energy effective scenario, where sym-
metries show up because we do not see the details of the underlying model. GUT
scenarios assume a specific large symmetry group to exist at the high scale and that
symmetries are broken spontaneously at most. Renormalizability is imposed to hold
at the high scale.

5 The massive scalar tadpole inD ∼ 2 is independent ofm given by A0(m)
D∼2
= 1

D−2
µ2

2π
,

while for D ∼ 4 we obtain A0(m) = Λ2

16π2 when regularized with an UV cutoff Λ.
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It turns out that the two-loop correction is moderate. If we require C2 ' 0,
we get the solution MH ' 253.77 GeV closer but still far away from its
experimentally established value. Therefore, such a possible scenario is def-
initely ruled out by the data, after the Higgs mass has been determined by
ATLAS and CMS.

In this paper, I advocate that quadratic divergences actually could play
an important role in a different way. In fact, the coefficient of the quadratic
divergence is scale dependent and exhibits a zero as emphasized recently by
Hamada, Kawai and Oda in Ref. [41]. While Hamada, Kawai and Oda find
the zero to lie above the Planck scale, in our analysis, relying on matching
conditions for the top-quark mass analyzed in Ref. [38]6, we find the zero not
far below the Planck scale. The difference originates from a different estimate
of the MS top-quark Yukawa coupling at the Z mass scale, which also implies
that the Higgs potential remains stable up to the Planck scale. For our
discussion here, it is important that a zero exists below the Planck scale,
where it has a simple physical interpretation. The corresponding change
in sign seems to provide a natural explanation for the Higgs mechanism in
the SM. In the very early universe, the quadratically enhanced bare Higgs
mass term provides a large dark energy density, which triggers inflation.
In this scenario, the hierarchy problem is not a problem but the solution
which explains inflation in the evolution of the early universe as a natural
phenomenon within the SM. As the universe is cooling down, the bare Higgs
mass changes sign and thus triggers the Higgs mechanism, stops inflation
and the negative m2 term falls into competition with the finite temperature
term and allows for the EW phase transition. In our Low Energy Effective
SM (LEESM) scenario the EW phase transition is closely correlated to the
Higgs mechanism as we will see.

In the next section, we remind the reader about the emergence of a local
renormalizable QFT in a low energy expansion from a system exhibiting a
physical UV cutoff at the microscopic level. In Section 3 we discuss the
matching conditions which determine the MS parameters from their physi-
cal on-shell counterparts. We emphasize the failure of “decoupling by hand”
prescriptions in the weak sector of the SM. The evolution of the SM running
parameters up to the Planck scale is presented in Section 4 for couplings,
masses and the Higgs vacuum expectation value (VEV). Section 5 is de-
voted to a discussion of the scale dependence of the quadratic divergences

6 Two issues which can cause different results (different parameterizations) are the
inclusion of tadpole contributions in the EW corrections and the non-decoupling of
heavy particles. It should be noted that, unlike in a calculation where we can drop
tadpoles by hand, any measurement of a physical on-shell observable automatically
includes tadpole contributions.
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and the observed first order phase transition, which triggers the Higgs mech-
anism. The impact of the results on inflation scenarios is briefly addressed
in Section 6. A summary and outlook follows in Section 7.

2. Low energy effective QFT of a cutoff system

If we say that the SM is a low-energy effective theory, we mean that
there must exist a more fundamental system exhibiting a physical cutoff, as
typical for condensed matter systems. Such a system we expect to reside
at the Planck scale, and the SM is expected to be the renormalizable tail
at long distances relative to the Planck length. The Planck energy scale
being beyond any direct experimental access, so far we only know its long
range structure and that the underlying fundamental system must be in
the universality class of the SM. Let us be more specific and sketch the
construction of a low-energy effective QFT by looking at the cutoff version
of the Higgs system only, for simplicity

L = L0 + Lint =
1

2
∂µφ(x)

(
1 + 2/Λ2

)
∂µφ(x)− 1

2
m2

0 φ(x)2 − λ0 Λ
ε

4!
φ4(x) .

(3)
The regularization is chosen here as a Pais–Uhlenbeck higher-derivative ki-
netic term [43], which is equivalent to a Pauli–Villars cutoff [44]. We are in-
terested in the model for D = 4 space-time dimensions but may consider the
more general case in D = 4− ε dimensions with 2 ≤ D ≤ 4 in order to make
comparisons with the same model in dimensional regularization. It is charac-
terized by its vertex functions (connected amputated one-particle irreducible
diagrams) of N scalar fields Γ (N)

Λ,b (p;m0, λ0) = 〈φ̃(p1) . . . φ̃(pN−1)φ(0)〉prop

as a function of the set of independent momenta, which we denote by
p=̂{pi} (i = 1, . . . , N−1). The bare functions are related to the renormalized
ones by (for specific renormalization conditions, see Ref. [45]) reparameter-
izing parameters and fields

Γ
(N)
Λ r (p;m,λ) = ZN/2(Λ/m, λ)Γ

(N)
Λ b (p; ∆m0(Λ,m, λ), λ0(Λ/m, λ)) . (4)

They satisfy a RG equation for the response to a change of the cutoff Λ
for fixed renormalized parameters Λ ∂

∂Λ Γ (N)Λ b

∣∣
m,λ

, which by applying the
chain rule of differentiation reads(

Λ
∂

∂Λ
+ β0

∂

∂λ
−N γ0 + δ0 ∆m2

0

∂

∂∆m2
0

)
Γ

(N)
Λ b (p;m0, λ0)

= Z−N/2 Λ
∂

∂Λ
Γ

(N)
Λ r (p;m,λ) . (5)
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m2
0c is the “critical value” of the bare mass for which the renormalized mass

is zero, i.e. Γ (2)
Λ b

∣∣∣
p=0

= 0, and ∆m2
0 = m2

0−m2
0c corresponds to the renormal-

ized mass parameter. Since the renormalized vertex functions have a regular
limit as Λ→∞, to all orders in perturbation theory the inhomogeneous part
behaves as

ZN/2 Λ
∂

∂Λ
Γ

(N)
Λ r (p;m,λ) = O

(
Λ−2(lnΛ)l

)
, (6)

i.e., the inhomogeneous part, representing a cutoff insertion, falls off faster
than the l.h.s. of Eq. (5) by two powers in the cutoff for large cutoffs. This
is easy to understand given the fact that the cutoff enters L as a term
proportional to Λ−2. Beyond perturbation theory one would have to require
the condition

ZN/2 Λ
∂

∂Λ
Γ

(N)
Λ r (p;m,λ)/Γ

(N)
Λ b = O

(
Λ−η

)
, (7)

for some positive η. In addition, also all the RG equation coefficients exist
as non-trivial functions in the limit of infinite cutoff

lim
Λ→∞

α0(Λ/m, λ) = α(λ) , α = β, γ, δ , (8)

for dimensions 2 ≤ D ≤ 4. In D = 4 − ε dimensions the proper vertex-
functions have a large cutoff Λ-expansion (see Ref. [46])

Γ
(N)
Λ b (p; ∆m0, λ0) =

∑
j,k,l≥0

Λ−2j−εk(lnΛ)l f
(N)
jkl (p ∆m0, λ0Λ

ε) , (9)

and for large Λ, we obtain the preasymptote of Γ (N)
Λ b

Γ
(N)
Λ as (p; ∆m0, λ0) =

∑
k,l≥0

Λ−εk(lnΛ)l f
(N)
0kl (p ∆m0, λ0Λ

ε) , (10)

collecting the leading terms and satisfying the bound∣∣∣Γ (N)
Λ b (p; ∆m0, λ0)− Γ (N)

Λ as (p; ∆m0, λ0)
∣∣∣ = O

(
Λ−2

(
lnΛlx

))
. (11)

The index lx is bounded to all orders in the perturbation expansion. The key
point is that the still cutoff dependent preasymptote satisfies a homogeneous
RG equation, a special property of the long range tail of the bare theory(

Λ
∂

∂Λ
+ βas(Λ/∆m0, λ0)

∂

∂λ0
−N γas(Λ/∆m0, λ0)

+δas(Λ/∆m0, λ0) ∆m2
0

∂

∂∆m2
0

)
Γ

(N)
Λ as (p; ∆m0, λ0) = 0 . (12)
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For more details, see Refs. [45–47]. The homogeneity tells us that Λ has
lost its function as a cutoff and takes the role of a renormalization scale,
i.e., (12) represents the response of a rescaling of the system: a change in
Λ is compensated by a finite renormalization of the fields, the couplings
and the masses7. By a finite renormalization we may reparametrize the
preasymptote by imposing appropriate renormalization conditions. Then
there exists a rescaling Λ = κµ such that we obtain the usual RG in the
renormalization scale µ of a non-trivial continuum QFT. This provides a
precise interrelation between preasymptotic and MS renormalized quantities,
and hence between the bare system seen from a long distance and the familiar
renormalized QFT physics. Thus, what we observe as the SM is a physical
reparameterization (renormalization) of the preasymptotic bare theory. In
the language of critical phenomena the “bare world” at the Planck scale
has to be in the universality class of the SM. As we only observe the tail,
details of the bare world remain largely unknown. One of the impacts of the
very high Planck scale is that the local renormalizable QFT structure of the
SM is presumably valid up to what is a typical GUT scale. It has nothing
to do with grand unification though. This also justifies the application of
the SM RG up to high scales. The tuning “to criticality” of the bare mass
to the critical mass m0c corresponds to what is known as the hierarchy or
naturalness problem in the SM. This naturalness problem is asking for an
answer to the question “who is tuning the knob of the thermostat to adjust
the temperature to its critical value (which is determined by the underlying
atomic structure of the condensed matter system)”. In the symmetric phase
of the SM, where masses of fermions and gauge bosons are forbidden by the
known chiral and gauge symmetries, respectively, there is only one mass,
common for all four fields in the complex Higgs doublet, to be renormalized.

7 This is similar to the well known response of the on-shell renormalized theory to a
change in the mass, now considered in the continuum limit Λ → ∞ renormalized
QFT. It is given by the Callan–Symanzik equation [48, 49](

m
∂

∂m
+ β(λ)

∂

∂λ
−N γ(λ)

)
Γ (N)
r (p;m,λ) = −m2 (2− δ(λ)) ∆0 Γ

(N)
r (p;m,λ) ,

where ∆0 is the integrated mass operator insertion. For large momenta the r.h.s. is
suppressed O(m2 ln(m)l) by the small mass-square m2 � p2 up to logarithms, such
that for large momenta asymptotically(

m
∂

∂m
+ β(λ)

∂

∂λ
−N γ(λ)

)
Γ (N)
r as (p;m,λ) = 0 .

The mass asymptotically only plays the role of a renormalization scale, Γ (N)
r as (p;m,λ)

are vertex functions of an effectively massless theory. Up to appropriate finite repa-
rameterization and a rescaling m = κµ, the homogeneous CS equations are nothing
but the standard RG equation in the MS scheme.
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Here, we encounter the fine tuning relation of the form

m2
0 = m2 + δm2 , δm2 =

Λ2

32π2
C (13)

with a coefficient typically C = O(1). To keep the renormalized mass m at
some small value, which can be seen at low energy, m2

0 has to be adjusted
to compensate the huge number δm2 such that about 35 digits must be
adjusted in order to get the observed value around the electroweak scale.
This is a problem only in cases where we have to take the relation between
bare and renormalized theory serious, like in a condensed matter system or
here in the LEESM scenario. The difference is, of course, that in particle
physics we never will be able to directly access experimentally the bare
system sitting at the Planck scale. Furthermore, we do not know what should
be the renormalized m2 in the symmetric phase where all physics is different
anyway. The hierarchy problem thus can be reformulated as “why is m2 in
the symmetric phase so much larger than M2

H in the broken phase?” The
answer is: m2 is naturally large because of the quadratic divergences, while
M2
H = 1

3 λ v
2 is small because the order parameter v, which sets the scale

for the low energy mass spectrum, is naturally a long range (low-energy)
quantity (similar to the magnetization in a ferromagnetic system). What
would it mean if v = O(MPl)? It would mean that spontaneous symmetry
breaking would not break the symmetry only via an asymmetric ground
state, but actually breaks the symmetry at the high energy scale, i.e., the
symmetry would not be recovered at high energies. This would contradict all
basic knowledge about spontaneous symmetry breaking in physical systems.

Of course, the question we would like to answer is why v/MPl ∼ 2×10−17

is that small. In a ferromagnetic system, it would mean that the magneti-
zation M in units of the lattice spacing a given by Ma is very small. The
magnetization is a function of the reduced temperature t = (T − Tc)/Tc

and goes to zero as t → −0, so to have Ma very small means that we are
close to the critical temperature from below. The quasi-criticality is not
unnatural in our context as the system seems to be self-tuning for its emer-
gence at long distances. Thus, in principle, having v small is not necessarily
a mystery. This question, in principle, can be answered by simulating the
lattice SM in the unitary gauge, where v is a decent Z2 order parameter
(spontaneous breaking of the symmetry H ↔ −H), and can by calculated
by non-perturbative means. In order to understand the v vs. MPl hierarchy
more quantitatively, it would suffice to investigate this question in a QCD,
top-Yukawa, Higgs system, where couplings must be such that all three cou-
plings remain asymptotically free and the Higgs vacuum stays stable up to
the cutoff (for related attempts in a different direction, see e.g. [50] and
references therein). In my opinion, the misunderstanding in arguments con-



The Standard Model as a Low-energy Effective Theory: What is Triggering . . . 1177

cerning fine-tuning problems is that a moderately large physical number is
considered to be the difference of two large uncorrelated numbers. In fact,
the structure of most fine tuning problems is different: a very large number,
like Λ2

Pl
32π2 in our case, may be multiplied by an O(1) size function which de-

pends on some parameters and which exhibits a zero for particular values of
the parameters. The magnetization as a function of temperature is a typical
well known example of this, namely, at the critical point the magnetiza-
tion necessarily gets zero, and it is naturally small if we are near the phase
transition point.

In the following, we consider the SM as a strictly renormalizable theory,
regularized as usual by dimensional regularization [51] in D = 4 − ε space-
time dimensions, such that the MS parametrization and the correspond-
ing RG can be used in the well known form [52]. Some care is necessary
in applying DR when dealing with the quadratic divergences as noted in
Refs. [22, 24, 40]. For our LEESM scenario it is the cutoff structure of the
D = 4 world which is relevant. It should be noted that in DR, as applied
to D = 4 theories with non-trivial spin structure, the latter is always taken
to reside in D = 4 space-time (see e.g. Sect. 2.4.2 of Ref. [53] for a short
outline) and in this sense is a hybrid “analytic continuation” designed to
provide a gauge-symmetry preserving regularization of the D = 4 dimen-
sional gauge theory. The DR as designed in Ref. [51] is not thought to deal
with the interrelation between true D-dimensional theories. Thus standard
DR singles out Veltman’s relation (1) as the relevant one against others in
our case.

In order to avoid misunderstandings, the MS scale parameter µ in our
analysis is to be interpreted as the energy scale of physical processes taking
place at that scale, in the sense we know the effective strong coupling αs(M

2
τ )

at the τ mass scale (e.g. hadronic τ -decays) and its value αs(M
2
Z) at the

Z boson mass scale (e.g. hadronic Z-decays). What we are interested in
is how the effective theory looks like at energies beyond present accelerator
energies. The vertex functions with scaled up momenta for fixed parameters
follows from a solution of the RG equation. To remind the Reader: a vertex
function of nB boson fields and nψ conjugate pairs of Fermi fields in the
Landau gauge satisfies the RG equation

{
µ
∂

∂µ
+ β

∂

∂g
+ γmm

∂

∂m
− nAγA − 2nψγψ

}
Γ ({p} , g,m, µ) = 0 , (14)

and is a homogeneous function of canonical dimension dimΓ = 4−nB−3nψ
under rescaling of all dimensionful quantities including momenta, masses
and the renormalization scale µ = κµ0. The RG solution then may be



1178 F. Jegerlehner

written in the form

Γ ({κp} , g,m, µ0) = κdimΓ zB(g, κ)−nB zψ(g, κ)−2nψ

×Γ
(
{p} , g(κ),

m(κ)

κ
, µ0

)
. (15)

The z-factors include the anomalous dimensions of the fields (for details, see
e.g. Sect. 2.6.5 of Ref. [53]). Thus, the vertex functions at higher momenta
{κp}, up to an overall factor are given by the vertex functions at the reference
momenta {p} and reference scale µ0, e.g. µ0 = MZ , with effective coupling
g(κ) and effective mass m(κ)/κ. This is the basic type of relation for a
discussion of the high energy asymptotic behavior8.

Let me summarize the advantage of taking seriously the idea that the
SM is a low energy effective theory of a cutoff system residing at the Planck
scale. Many structural elements usually derived form phenomenology nat-
urally emerge in the low energy regime we are living in. One is the sim-
plicity of the SM as a result of our blindness to details, which implies more
symmetries. Yang–Mills structure (gauge cancellations) with small groups:
doublets, triplets besides singlets, Lorentz invariance9, anomaly cancellation
and family structure, triviality for space-time dimensions D > 4 are emer-
gent properties. D = 4 is the border case for an interacting world at long
distances, extra dimensions just trivialize by themselves and have nothing

8 A very different well known role played by the MS parameter µ is the following: pre-
dictions of observables (S-matrix elements and related cross-sections) in fixed order
perturbation expansion are renormalization scheme dependent because of truncation
errors (missing higher order contributions, which depend on the order of the pertur-
bative expansion and on the parametrization chosen). In the MS scheme, the scheme
dependence particularly is manifest in the unphysical µ dependence of the prediction
of the physical quantity which, in general, gets weaker the more terms are included.

9 It emerges in a similar way as rotational invariance in condensed matter systems.
Take as an example the Planck medium to be a d dimensional Euclidean lattice
system. Rotational invariance is emerging as follows: expand the hyper-cubic lattice
propagator on the Brillouin zone

G−1
0 (~q ) = m2

0 + 4a−2
d∑
i=1

sin2 aqi
2
→ m2

0 + q2 + Λ−2q4 , q2 = ~q 2 , Λ = π/a

for small ~q and replace the cutoff box by a sphere of radius Λ

+π/a∫
−π/a

ddq · · · →
∫
|~q|≤Λ

ddq . . . ,

up to field renormalization which does not affect the long range properties of the
original system. For Λ large, resulting correlation functions are identical with those
of a rotational invariant Euclidean QFT with a cutoff.
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to do with compactification etc. Last but not least, the low energy tail is a
non-trivial renormalizable QFT. The high cutoff implies the reliability of the
LEESM scenario up to close to the Planck scale. This scenario does not
imply that no new physics is expected to show up even at close-by
or intermediate energy scales, but we expect it to be constrained
by its natural emergence in a low energy expansion. Remember that
the hot Planck medium residing at the Planck scale is expected to exhibit a
whole spectrum of modes, a “chaos” so to say, from which long range proper-
ties emerge as a self-organizing system. We should also note that emergent
low energy symmetries are all violated near the Planck scale, which could
be important for quantities like baryon of lepton number conservation. It
is unlikely that going to higher energies what we see as the SM will not
be decorated by yet unseen physics, which still would naturally appear as
a renormalizable extension of the SM. An example could be particle quar-
tet conspiracies forming a low energy effective SU(4) in addition to the SM
gauge group.

3. Matching conditions

When studying the scale dependence of a theory at very high energies,
where the theory is effectively massless and hence practically in the symmet-
ric phase, the MS renormalization scheme is the favorite choice to study the
scale dependence of the theory. On the other hand, the physical values of
parameters are determined by physical processes described by on-shell ma-
trix elements and thus usually are available in the on-shell renormalization
scheme primarily. The transition from one scheme to the other is defined by
appropriate matching conditions. For the physical masses, they are given
by the mass counterterms relating the bare and the renormalized masses as
m2

b0 = M2
b +δM2

b for bosons and mf0 = Mf +δMf for fermions, respectively.
By mi0 we denoted the bare, by mi the MS and by Mi the on-shell masses.
Reg = 2

ε − γ+ ln 4π+ lnµ2
0 is the UV regulator term to be set equal to lnµ2

where µ0 is the bare µ-parameter while µ denotes the renormalized one.
The substitution defines the UV finite MS parametrization. By identifying
m2

b = M2
b + δM2

b |Reg=lnµ2 and mf = Mf + δMf |Reg=lnµ2 , respectively, we
then obtain the MS masses in terms of the on-shell masses. More precisely,
this follows from the following relations valid for bosons

m2
b0 = M2

b + δM2
b

∣∣
OS

= m2
b + δM2

b

∣∣
MS

, (16)

where

δM2
b

∣∣
MS

=
(
δM2

b

∣∣
OS

)
UV sing

(17)
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which means that only the UV singular Reg terms are kept as MS countert-
erms. Thus

m2
b

(
µ2
)

= M2
b + δM2

b

∣∣
OS
− δM2

b

∣∣
MS

= M2
b +

(
δM2

b

∣∣
OS

)
Reg=lnµ2

. (18)

Corresponding linear relations hold for the fermion masses. Similar relations
apply for the coupling constants g, g′, λ and yf , which, however, usually are
fixed using the mass-coupling relations in terms of the masses and the Higgs
VEV, which is determined by the Fermi constant as v = (

√
2Gµ)−1/2. Here,

Gµ is the muon decay constant, which represents the Fermi constant in
the on-shell scheme. The MS version of the Fermi constant we denote by
GMS

F or simply by GF. The matching condition for the Higgs VEV may be
represented in terms of the matching condition for the muon decay constant

GMS
F

(
µ2
)

= Gµ +
(
δGµ|OS

)
Reg=lnµ2

, (19)

where δGµ
Gµ

∣∣∣
OS

= 2 δv−1

v−1 , which at one-loop is given in the Appendix. For the

relevant two-loop counterterms, see Ref. [54, 55]. Then the MS top quark
Yukawa coupling is given by

yMS
t

(
M2
t

)
=
√

2
mt

(
M2
t

)
vMS

(
M2
t

) , vMS
(
µ2
)

=
(√

2GMS
F

)−1/2 (
µ2
)
, (20)

and the other MS mass-coupling relations correspondingly.
In the mass relations just presented, tadpole contributions have to be

included in order to get a gauge invariant relationship between on-shell and
MS masses as well as in order to preserve the UV singularity structure and
hence the RG equations. Tadpoles show up as renormalization counterterms
of the Higgs VEV v and quantities which depend on it, in particular, the
masses which are generated by the Higgs mechanism. It is important to note
that measured on-shell observables always include tadpole terms. Unlike
in theory, experiments cannot switch off or omit subsets of diagrams. Even
measured on-shell values of dimensionless couplings are affected by tadpoles
via the on-mass-shell condition.

The proper expressions including the relevant tadpole terms for the SM
counterterms at one-loop have been given in Ref. [56] and may be found in
the Appendix. For the Higgs mass, such a relation has been elaborated in
Ref. [57] as a relation between λ and λMS under the proviso that GMS

F = Gµ,
which is not generally true, because, in general, GMS

F is expected to be a
running parameter as well. Interpreted as a relation between mH and MH ,
the relation is identical to what is obtained from the relation m2

H = M2
H +
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δM2

H

∣∣
OS

)
Reg=lnµ2

. Note that the only information we have on λ is from

the experimental results on MH via λ = 3
√

2GµM
2
H . For the top-quark

mass, the full SM relation between the pole mass and the MS mass has been
evaluated recently in Ref. [38], evaluating known results from Refs. [58–68]
(see also Refs. [69, 70] and comments in Ref. [38]) in the relation

Mt −mt(µ
2) = mt

(
µ2
)∑
j=1

(
αs

(
µ2
)

π

)j
ρj

+mt

(
µ2
) ∑
i=1;j=0

(
α
(
µ2
)

π

)i(
αs

(
µ2
)

π

)j
rij . (21)

There is an almost perfect cancellation between the QCD and EW effects for
the now known value of the Higgs boson mass. While

[
mt(M

2
t )−Mt

]
QCD

=

−10.38 GeV, one finds [38]
[
mt(M

2
t )−Mt

]
SM

= 1.14 GeV forMH = 125 GeV.
As elaborated in Ref. [38], some care is required in the evaluation of

the matching conditions. It is important to remind that the Appelquist–
Carazzone theorem [71] does not apply to the weak sector of the SM, i.e.
we cannot parametrize and match together effective theories by switching off
fields of mass M>µ at a given scale µ. As we know, the theorem applies to
QCD and QED, and in these cases provides the basis for the “decoupling by
hand” prescription usually used in conjunction with the MS parametrization,
the preferred parametrization in perturbative QCD. The non-decoupling in
the weak sector of the SM is a consequence of the mass coupling relations,
which follow if the masses are generated by the Higgs mechanism. An impor-
tant question then is what role tadpoles play in implementing the matching
conditions, since tadpoles, potentially, give large contributions. However,
we may take advantage of the fact that tadpole contributions drop out from
relations between physical (on-shell) parameters and amplitudes [72, 73],
while they can produce large shifts in the relations between the “quasi-bare”
MS parameters and the on-shell ones. As mentioned before, potentially,
the Higgs VEV v, which determines the Fermi constant via GF = 1√

2v2
,

could be particularly affected. However, we may compare the low energy
effective Fermi constant GF given by Gµ, which is determined by the muon
lifetime observed in µ-decay, with its “high energy” variant at the W boson
mass scale, where it can be identified with Ĝµ = 12πΓW`ν√

2M3
W

in terms of the

leptonic W -decay rate. The fact that Ĝµ ≈ Gµ with good accuracy is not
surprising because the tadpole corrections which potentially lead to substan-
tial corrections are absent in relations between observable quantities as we
know. To be precise: with the PDG values MW = 80.385 ± 0.015 GeV,
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ΓW = 2.085 ± 0.042 GeV and the leptonic branching fraction B(W →
`ν`) = 10.80 ± 0.09% we obtain Ĝµ = 1.15564(55) × 10−5 GeV−2, while
Gµ=1.16637(1)×10−5 GeV−2, i.e., the on-shell Fermi constant at scale MZ

appears reduced by 0.92% relative to Gµ.
Therefore, a SM parametrization in terms of α(MZ), αs(MZ), Ĝµ and

MZ (besides the other masses), provides a good parametrization of the ob-
servables extracted from experiments at the vector boson mass scale. The Z
mass scale, thus is an ideal matching scale, to evaluate the MS parameters in
terms of corresponding on-shell values. Note that the running of GF starts
to be important once MW , MZ , MH and Mt come into play. At higher
scales, certainly, the MS version of v(µ2) or equivalently GMS

F (µ2) must be
running as required by the corresponding RG.

For numerical results presented in the following sections, we use values
for the input parameters [74]

MZ = 91.1876(21) GeV , MW = 80.385(15) GeV ,
Mt = 173.5(1.0) GeV ,
Gµ = 1.16637(1)× 10−5 GeV−2 ,

Ĝµ = Gµ(MZ) = 1.15564(55)× 10−5 GeV−2 ,

α−1 = 137.035999 , α−1
(
M2
Z

)
= 127.944 , αs

(
M2
Z

)
= 0.1184(7) .

(22)

For the Higgs mass we adopt

MH = 125.9± 0.4 GeV , (23)

in accord with latest ATLAS and CMS reports. All light-fermion masses
Mf (f 6= t) give negligible effects and do not play any role in our considera-
tion. The top-quark mass given above is taken to be the pole mass. It should
be reminded that it is not precisely clear whether the value reported by ex-
periments or by the PDG can be identified with the on-shell mass within the
given accuracy. For a recent review on the subtleties in defining/measuring
the top-quark mass, see e.g. Ref. [75] and references therein. The evaluated
MS parameters may be found in Table I below.

4. The SM RG evolution to the Planck scale

The SM RG in the symmetric phase to two loops has been known for a
long time [76–80]. More recently, important extensions to three loops have
been presented in Refs. [11, 12, 14–17, 19]. Of special interest is the behavior
of the Higgs self-coupling λ, which plays a key role for the possible stability
or instability of the SM ground state. In fact, solutions depend crucially on



The Standard Model as a Low-energy Effective Theory: What is Triggering . . . 1183

including all couplings contributing. For example, it makes a big difference
whether one works in the so-called gaugeless limit10 in the evolution of yt
and λ as in Ref. [12], for example, or is including also the gauge coupling
contributions as far as they are known (see e.g. Ref. [13, 18] for a fairly
complete set of known corrections). Some time ago RG equations to two
loops for the SM masses as well as for the Higgs VEV in the broken phase
have been calculated in Ref. [54, 55, 81], where it has been shown that the
RG equations of the symmetric phase are correctly obtained from the ones
in the broken phase. The inclusion of the tadpoles thereby is crucial.

The RG equation for v2(µ2) follows from the RG equations for the masses
and the dimensionless coupling constants using one of the relations

v2
(
µ2
)

= 4
m2
W

(
µ2
)

g2 (µ2)
= 4

m2
Z

(
µ2
)
−m2

W

(
µ2
)

g′2 (µ2)
= 2

m2
f

(
µ2
)

y2
f (µ2)

= 3
m2
H

(
µ2
)

λ (µ2)
.

(24)
As a key relation, we will use Eq. (10) of Ref. [54]

µ2 d

dµ2
v2
(
µ2
)

= 3µ2 d

dµ2

[
m2
H

(
µ2
)

λ (µ2)

]
≡ v2

(
µ2
) [
γm2 −

βλ
λ

]
. (25)

We remind that all dimensionless couplings satisfy the same RG equations
in the broken and in the unbroken phase.

As we know, the Higgs VEV v is a key parameter of the SM, which in-
terrelates masses and couplings in a well defined way. As a consequence,
the RG for mass parameters can be obtained not only by direct calcu-
lation in the broken phase, but also from the knowledge of the RG of
the parameters in the symmetric phase together with the one for v(µ2) or
v2(µ2) = 1/

(√
2GMS

F (µ2)
)
as given in Eq. (25). The proper MS definition

of a running fermion mass is

mf

(
µ2
)

=
1√
2
v
(
µ2
)
yf

(
µ2
)
. (26)

Of particular interest in our context is the top-quark mass for which the RG
equation reads

µ2 d

dµ2
lnm2

t = γt(αs, α) . (27)

We split γt(αs, α) into two parts γt(αs, α) = γQCD
t + γEW

t , where γQCD
t

is the QCD anomalous dimension, and γEW
t the corresponding electroweak

10 This term is often used for the approximation g′ = g = 0. The QCD coupling g3 in
any case has to be taken into account, besides the top Yukawa coupling yt and the
Higgs self-coupling λ.
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one. γQCD
t includes all terms which are proportional to powers of αs only

and γEW
t includes all other terms proportional to at least one power of α,

and beyond one-loop multiplied by further powers of α and/or αs.
In Refs. [54, 55, 81] the electroweak contribution to the fermion mass

anomalous dimension γEW
f has been calculated in terms of the RG functions

of the parameters in the unbroken phase of the SM: the result is given by

γEW
t = γyt +

1

2
γm2 −

1

2

βλ
λ
, (28)

where γm2 ≡ µ2 d
dµ2

lnm2, βλ ≡ µ2 d
dµ2

λ, and γyq ≡ µ2 d
dµ2

ln yq, with yq the
quark Yukawa coupling.

In the following, we present the results for the running SM parameters
in various plots. The RG equations for the gauge couplings g3 = (4παs)

1/2,
g2 = g and g1 = g′, for the Yukawa coupling yt and for the Higgs potential
parameters λ and lnm2 have been solved in the MS scheme with initial values
obtained by evaluating the matching conditions between pole and running
masses. For the case of the dimensionless couplings, we reproduce known
results within uncertainties. The MS Higgs VEV square is then obtained by
v2(µ2) = −6m2(µ2)

λ(µ2)
and the other masses by the relations (24).

Figure 1 shows the solutions of the RG equations and the β-functions up
to µ = MPl. The running masses and the solutions for the Higgs potential
mass parameter m as well as v and the equivalent GF are depicted in Fig. 2.

Fig. 1. Left: the SM dimensionless couplings in the MS scheme as a function
of the renormalization scale (see Refs. [8, 9, 13, 18, 41]). The input parameter
uncertainties as given in Eqs. (22) and (23) are exhibited by the line thickness.
The shaded/green band corresponds to Higgs masses in the range [124–127] GeV.
Right: the β-functions for the couplings g3, g2, g1, yt and λ. The uncertainties are
represented by the line widths.
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Remarkably, as previously found for the running couplings in Refs.
[8, 9, 13, 18, 41], all parameters stay in bounded ranges up to the Planck
scale if one adopts our matching conditions together with the so far calcu-
lated RG coefficients. With the input parameters evaluated in the previous
section, we note that including all known terms no transition to a metastable
state in the effective Higgs potential is observed, i.e. no change of sign in λ
occurs. This is in contrast to a number of other evaluations (which however
are not independent as they essentially use the same input parameters). The
difference concerns the MS input-value for the top-quark Yukawa coupling,
which in our case is bases on the analysis Ref. [38], and has been confirmed
more recently in Ref. [19].

We observe that the various couplings evolve to values of similar magni-
tude at the Planck scale, within a factor of about 2 if we compare

√
λ with

the others. While the gauge couplings are much closer than they are at low
energies, there is no reason for perfect unification. The different types, the
gauge boson-, the fermion- and the Higgs-couplings have no reason not to
differ even if they emerge form one cutoff system. That the leading couplings
are of the same order of magnitude, however, makes sense in such a kind of
scenario. The emergence of the fermion mass hierarchy is a different issue.

We may understand the key point concerning the behavior of the effective
parameters when we look at the leading terms of the β-functions. At the
Z boson mass scale, the couplings are given by g1 ' 0.350, g2 ' 0.653,
g3 ' 1.220, yt ' 0.935 and λ ' 0.807. While the gauge couplings behave as
expected, g1 is infrared (IR) free, g2 and g3 are asymptotically (ultraviolet)
free (AF), with leading coefficients exhibiting the related coupling only

β1 = 41
6 g

3
1 c ' 0.00185 , β2 = −19

6 g
2
2 c ' −0.00558 ,

β3 = −7 g3
3 c ' −0.08049 ,

with c = 1
16π2 , the leading top Yukawa β-function given by

βyt =
(

9
2 y

3
t − 17

12 g
2
1 yt − 9

4 g
2
2 yt − 8 g2

3 yt
)
c

' 0.02327− 0.00103− 0.00568− 0.07048

' −0.05391

not only depends on yt, but also on mixed terms with the gauge couplings
which have a negative sign. In fact, the QCD correction is the leading contri-
bution and determines the behavior. Notice the critical balance between the
dominant strong and the top Yukawa couplings: QCD dominance requires
g3 >

3
4 yt in the gaugeless limit.
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Similarly, the β-function of the Higgs self-coupling, given by

βλ =

(
4λ2 − 3 g2

1 λ− 9λ g2
2 + 12 y2

t λ+
9

4
g4

1 +
9

2
g2

1 g
2
2 +

27

4
g4

2 − 36 y4
t

)
c

' 0.01650−0.00187−0.01961+0.05358+0.00021+0.00149+0.00777

−0.17401 ' −0.11595

is dominated by the top Yukawa contribution and not by the λ coupling
itself. At leading order it is not subject to QCD corrections. Here, the yt
dominance condition reads λ < 3 (

√
5−1)
2 y2

t in the gaugeless limit. The top
Yukawa coupling is turned from an intrinsically IR free to an AF coupling
by the QCD term and similarly the Higgs self-coupling is transmuted from
IR free to AF by the dominating top Yukawa term. Including known higher
order terms, except from βλ, which exhibits a zero at about µλ ∼ 1017 GeV,
all other β-functions do not exhibit a zero in the range from µ = MZ to
µ = MPl. So, apart form the U(1)Y coupling g1, which increases moderately
only, all other couplings decrease and perturbation theory is in good condi-
tion. Actually, at µ = MPl gauge couplings are all close to gi ∼ 0.5, while
yt ∼ 0.35 and

√
λ ∼ 0.36.

As shown in Fig. 2, the masses stay bounded up to the transition point to
the symmetric phase, discussed in the next section. In the broken phase the
effective mass relevant for the high energy behavior, obtained by rescaling
all the momenta of the process {pi} → {κpi} κ→∞, up to an overall factor
is m(κ)/κ→ 0 (see Eq. (15)).

What is interesting is that the hierarchy of the effective masses gets
mixed up. While the effective Higgs mass mH and the related Higgs po-
tential mass m are weakly scale dependent, the Higgs coupling λ drops
pretty fast by a factor about 8, together this is causing the Higgs VEV
v =

√
3/λmH to increase by a factor about 3.5. Note that, according to the

mass-coupling relationships (24), what compares to the other couplings is√
λ not λ itself. Given that mH is weakly scale dependent, what determines

the mass hierarchy are the relations (see Eq. (8) of Ref. [54])

mW

(
µ2
)

mH (µ2)
=

√
3

4

g2 (µ2)

λ (µ2)
,

mZ

(
µ2
)

mH (µ2)
=

√
3

4

g2 (µ2) + g′2 (µ2)

λ (µ2)
,

mt

(
µ2
)

mH (µ2)
=

√
3

2

y2
t (µ2)

λ (µ2)
,

which must hold in the broken phase. Since g is decreasing while g′ is
increasing, the Z boson mass grows most and exceeds mH above about
8× 104 GeV and even mt above about 7 × 1010 GeV. The W boson mass
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Fig. 2. Non-zero dimensional MS running parameters. Top left: the running MS

masses. The shadowed regions show parameter uncertainties, mainly due to the
uncertainty in αs, for a Higgs mass of 124 GeV, higher bands, and for 127 GeV,
lower bands. The range also determines the lowest (green) band for the Higgs mass
evolution. Top right: the MS Higgs potential parameter m. Bottom: v =

√
6/λm

and GF = 1/(
√

2 v2). Error bands include SM parameter uncertainties and a Higgs
mass range 125.5± 1.5 GeV which essentially determines the widths of the bands.

exceeds mH above about 5×106 GeV. These crossings happen in the history
of the universe some time after inflation, Higgs mechanism and EW phase
transition, but long before processes like nucleosynthesis set in. The effective
mass hierarchy is expected to play a role during the EW phase transition
and in some temperature range just below it.
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Table I lists MS couplings at various scales, representing the central
values for MH = 126 GeV, which we will use in the following. Other
quark Yukawa couplings are given by ys(Mt[MPl]) = 1.087[0.357] × 10−3,
yd(Mt[MPl]) = 5.151[1.689]× 10−5.

For MH = 126 GeV the zero of C1 is at µ0 ' 1.4 × 1016 GeV the one
of C2 at µ0 ' 1.1 × 1016 GeV . For the same Higgs mass the beta-function
βλ has a zero at 1.3× 1017 GeV . Since the difference between C1 and C2 is
small, we will adopt C1 and the corresponding value for µ0, in what follows.

TABLE I

MS parameters at various scales for MH = 126 GeV and µ0 ' 1.4 × 1016 GeV.
C1 and C2 are the one- and two-loop coefficients of the quadratic divergence
Eqs. (29) and (30), respectively. Last two columns show corresponding results
from Ref. [18].

Coupling/scale MZ Mt µ0 MPl Mt [18] MPl [18]

g3 1.2200 1.1644 0.5271 0.4886 1.1644 0.4873
g2 0.6530 0.6496 0.5249 0.5068 0.6483 0.5057
g1 0.3497 0.3509 0.4333 0.4589 0.3587 0.4777
yt 0.9347 0.9002 0.3872 0.3510 0.9399 0.3823
yb 0.0238 0.0227 0.0082 0.0074
yτ 0.0104 0.0104 0.0097 0.0094√
λ 0.8983 0.8586 0.3732 0.3749 0.8733 i 0.1131
λ 0.8070 0.7373 0.1393 0.1405 0.7626 −0.0128
C1 −6.768 −6.110 0 0.2741
C2 −6.672 −6.217 0 0.2845

m [GeV] 89.096 89.889 97.278 96.498 97.278

5. The issue of quadratic divergences in the SM

A discussion of the large scale behavior of the SM is incomplete if we
disregard the problem of quadratic divergences and the related hierarchy
problem. In contrast to the dimensionless running couplings, all mass renor-
malizations (except the photon) are affected by quadratic (H, W and Z) or
linear divergences (fermions), which are related universally to the renormal-
ization of the Higgs potential parameterm2 or equivalently to the Higgs VEV
v in the broken phase. Standard MS mass RG equations usually take into
account only the logarithmic singularities remaining after “throwing away”,
by analytic continuation and subsequent ε-expansion, quadratic or linear di-
vergences. Per se, the RG is a leading log, next-to-leading log, and so forth
resummation tool. Note that this is possible in this way only in the purely
perturbative MS scheme, while with a more physical lattice regularization,
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which applies beyond perturbation theory, the quadratic divergences cannot
be eliminated in this way. In other words, the hierarchy problem is a real
problem as reanalyzed recently in Ref. [41]. In terms of masses, the leading
one-loop Higgs mass counterterm is given in Eq. (1), modulo small lighter
fermion contributions [22] (see also Ref. [33]). The one-loop coefficient func-
tion C1 may be written as

C1 = 2λ+ 3
2 g
′2 + 9

2 g
2 − 12 y2

t (29)

and is uniquely determined by dimensionless couplings. Surprisingly, taking
into account the running of the SM couplings, which are not affected by
quadratic divergences such that standard RG equations apply, the coefficient
of the quadratic divergences of the Higgs mass counterterm vanishes at about
µ0 ∼ 1.4× 1016 GeV given our set of MS input parameters at the scale MZ .
As shown in Ref. [41], the next-order correction

C2 = C1 +
ln
(
26/33

)
16π2

[
18 y4

t + y2
t

(
−7

6
g′

2
+

9

2
g2 − 32 g2

s

)
−87

8
g′

4 − 63

8
g4 − 15

4
g2g′

2
+ λ

(
−6 y2

t + g′
2

+ 3 g2
)
− 2

3
λ2

]
, (30)

calculated first in Ref. [40] (see also [42]), numerically does not change signif-
icantly the one-loop result. The same result applies for the Higgs potential
parameter m2 which corresponds to m2=̂1

2 M
2
H . Thus

m2
0 = m2 + δm2 , δm2 =

Λ2

32π2
C . (31)

The relevant parameters are entirely given in terms of SM parameters in
the unbroken phase, which is physical at high energies, as well as at a dif-
ferent scale in the broken low energy phase, where parameters are directly
accessible. It is important to note that the renormalized m2 in the sym-
metric phase is not known and not accessible directly to experiment, which
means that it is not known whether there is a fine tuning problem in the
symmetric phase. As we will see below, if m2 is not much smaller than the
very large δm2 it would affect the inflation pattern and thus, in principle,
is constrained by the observed properties of Cosmic Microwave Background
(CMB) fluctuations [82].

For scales µ < µ0, we have δm2 large negative, which is triggering spon-
taneous symmetry breaking by a negative bare mass m2

0 = m2 + δm2, where
m denotes a so-far unknown renormalized mass. With increasing energy
scale, at µ = µ0, the sign of δm2 flips and implies a phase transition to the
symmetric phase, which persists up to the Planck scale. This means that



1190 F. Jegerlehner

in the early universe, up to times about ∼ 0.23 × 10−38 to 10−42 seconds
after the Big Bang, the SM is in the unbroken phase. Finite temperature
effects, to be discussed below, generally are accelerating the transition to
the symmetric phase. This transition is relevant for inflation scenarios in
the evolution of the universe. At µ0 the Higgs VEV jumps to zero and SM
gauge boson and fermion masses all vanish, at least provided the scalar self-
coupling λ continues to be positive. Note that the phase transition scale
µ0 is close to the zero µλ ∼ 1.3 × 1017 GeV of the β-function βλ, where
βλ(µλ) = 0. While λ is decreasing below µλ, it starts to increase weakly
above that scale.

The important point is that to all orders of perturbation theory as well as
beyond perturbation theory there exists a solution C = 0, i.e. the relation (1)
is expected to get corrections from higher-order effects which are shifting
the location of the zero but do not affect its existence. Such relations are
relations between the dimensionless gauge-, Yukawa- and Higgs-couplings
and do not depend on dimensionful low-energy parameters like the Higgs
potential mass m (in the symmetric phase) or the Higgs VEV v (in the
broken phase). Of course m, v like ΛPl can/must show up as overall factors
in dimensionful quantities. Higher order corrections may depend on ratios
of these.

Given all masses of the SM, we note that 4M2
t > M2

H+M2
Z+2M2

W which
makes the Higgs mass counterterm δM2

H < 0 and it is the heavy top quark
which triggers spontaneous symmetry breaking in the SM as the bare mass
square m2

H0 = M2
H + δM2

H is driven to negative values. Figure 3 shows how
the coefficient C is dominated by the leading order term and as a function of
the MS running couplings vanishes and changes sign below the Planck scale.
Interestingly, the top-quark mass and the Higgs mass, in conspiracy with
the other relevant couplings, are such that the quadratic divergence vanishes
precisely not far below the Planck scale, as illustrated in a different way in
Fig. 4. The observation that, taking into account the scale dependence, there
is a zero in the coefficient Ci (i = 1, 2) of the quadratic divergence has been
pointed out in Ref. [41]. Also in this case, the precise location of the zero
is sensitive in particular to the top-quark Yukawa coupling and with their
input, in Ref. [41], the zero was found to be located above the Planck scale,
which in our LEESM scenario would not have a physical meaning.

Concerning the hierarchy problem, a zero at some scale does not elimi-
nate the problem altogether of course, as illustrated by Fig. 5. Nevertheless,
in the vicinity of the transition point, the system seems not to remember
the short distance scale ΛPl and the VEV which develops at the close-by
EW phase transition takes a value which need not be related to the short
distance scale.
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Fig. 3. The coefficient of the quadratic divergence term at one and two loops as a
function of the renormalization scale. The one-loop result essentially determines
the behavior. The coefficient exhibits a zero, for MH = 126 GeV at about µ0 ∼
1.4 × 1016 GeV, not far below µ = MPl. The shaded band shows the parameter
uncertainties given in Eqs. (22), (23).

Fig. 4. Left: the coefficient of the quadratic divergence term at µ = MPl as a
function of MH for Mt = 173.5 GeV. Right: the same as a function of Mt for
MH = 125 GeV. In the shaded region, the zero is above the Planck scale and thus
unphysical in our LEESM context.

Here, we have another argument why v can have any value we want: let
us consider the location of the minimum of the potential as a function of
the Higgs potential parameters m2

0 and λ. For given positive λ, when we
vary m2

0 from positive to negative values as it happens when changing the
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energy scale µ from above µ0 to below it. One has v ≡ 0 when m2
0 ≥ 0 and

v2 = −6m2
0

λ as soon as m2
0 < 0. So v is a continuous function of m2

0 and can
take any value. It is certainly not justified to assume that v is jumping from
zero to MPl, suddenly.

Fig. 5. The Higgs phase transition in the SM. Left: shown is X = sign(m2
0) ×

log10(|m2
0|) which represents m2

0 = sign(m2
0) × 10X . In the broken phase m2

0 =
1
2 m

2
H 0. At the zero of the coefficient function shown in Fig. 3 the counterterm

δm2 = m2
0 −m2 = 0 (m the MS mass) vanishes and the bare mass changes sign.

The band represents the parameter uncertainties Eqs. (22), (23). Right: the “jump”
−∆ρvac = λ

24 v
4
0 in units of M4

Pl as a function of the renormalization scale µ. The
jump, too small to be seen in this plot, agrees with the renormalized one.

Another point concerning the Higgs transition11 and the meaning of the
key relation (31). Before the Higgs mechanism has taken place in the cooling
down of the universe we are at very high energy and we see the bare theory.
At these scales a relation like (31) is observable, i.e. all three terms have a
physical meaning and, in principle, are accessible to experiments. Below the
Higgs transition, we are in the low energy regime characterized by the long
range quantity v, which results form long range collective behavior of the
system. In this case, the relation (31) provides a matching relation between
renormalized and bare quantities in the broken phase, for δm2 = 0. In the
low energy phase, the bare m2

0 and the counterterm δm2 are not observable

11 We use the term “Higgs transition point” for the point where the Higgs mechanism
would take place in the zero temperature SM. The Higgs transition point lies above
the EW phase transition point because of finite temperature effects which must be
taken into account when considering the evolution of the hot early universe (see
below).
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any longer. The relation is not testable by low energy experiments, and if we
try to test it by short distance experiments we are back testing the symmetric
phase where the quantities have changed their values and meaning.

At the transition point µ0, we have v0 = v(µ2
0), where v(µ2) is the MS

renormalized VEV. Thus the contribution to the vacuum energy

∆ρvac = −
λ
(
µ2

0

)
24

v4
(
µ2

0

)
, (32)

is O(v4) and not O(M4
Pl).

In any case, depending on finite temperature effects, near the zero of
the coefficient function there is a phase transition, which corresponds to
a restoration of the symmetry. Taking into account input parameter un-
certainties, the transition is found to take place at a scale in the range of
µ ∼ 1016 to 1018 GeV, also depending on finite temperature effects. This
is one to three orders of magnitude below the Planck scale. Now, in the
symmetric phase, the positive quadratically enhanced bare mass term has
the potential to trigger inflation. Note that at the zero of βλ at about
µλ ∼ 1.3× 1017 GeV > µ0 the Higgs self-coupling λ although rather small is
still positive and then starts slowly increasing up toMPl. The point µ = µλ,
where βλ(µλ) = 0, corresponds to a phase transition form the antiscreening
to the screening phase. It is not an RG fixed point though, because the
βλ(µ)-function depends on other couplings which also change with the scale.

We also note that a zero of λ in the Higgs phase formally lets the Higgs
VEV v explode: v2(µ2) = −6m2(µ2)/λ(µ2) → ∞ as λ(µ2) → 0. Several
analyses (see Ref. [18] and references therein), which find a somewhat higher
MS input value for yt(M2

t ) find a zero of λ as low as µ ∼ 109 GeV. Except
for the Higgs mass mH =

√
2m all masses would reach values O(MPl). In

the LEESM scenario, of course, higher dimensional operators would save
stability of the potential, which is assumed to be a given property of the
Planck medium. It would mean that dimension 6 operators come into play
at much lower scales than expected by naive E/ΛPl counting.

If we take renormalization as a physical process similar to what it is
in condensed matter physics where both bare and renormalized (effective)
quantities are physical and accessible to experiments, the key question is
what happens to the effective Higgs potential V =

m2
0

2 H2 + λ
24H

4. When the
m2

0-term changes sign and λ stays positive, we know it is a first order phase
transition. The latter term maybe is used somewhat sloppy here. Actually,
when continuously lowering the temperature coming from the high energy
side m2

0(µ) is a continuous function of µ. If we would have m2 = 0, i.e.
m2

0 = δm2, then v0(µ) (v2
0 = −6m2

0
λ when m2

0 < 0) would be a continuous
function of the scale as well, although a non-analytic one. When µ ≥ µ0
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v0(µ) ≡ 0 and for µ < µ0 we have v0(µ) > 0 monotonically increasing as µ
decreases. Thus, the point µ0 is the end point from below of a continuous
family of first order transition points and hence itself represents a second
order phase transition point. Actually, because the renormalized m2 > 0 is
non-zero, more precisely, the Higgs transition point m2

0 = 0 is reached when
δm2 = −m2, which is slightly below µ0 at µH . However, the “high energy
meets low energy” and matching point is δm2 = 0 wherem2

0 = m2. Here, the
renormalized MS mass square m2 = m2(µ0) is given, fixed via RG running
and low energy MS vs. on-shell matching condition by the experimental
value of the Higgs mass MH . Note that the initial condition m2 = m2(µ0)
is a point still in the symmetric phase and when the Higgs transition takes
place at µH < µ0 we have a finite v2(µH) = −6m2(µH)

λ(µH) , i.e. factually we see
a jump from v = 0 to v 6= 0 at the Higgs transition. In that sense, the Higgs
transition represents a first order phase transition.

Since the bare Lagrangian is the true Lagrangian (renormalization is just
reshuffling terms) the change in sign of the bare mass is what determines
the phase12.

Above the transition point the number of massless degrees of freedom
(radiation) of the SM consists of gf = 90 fermionic degrees of freedom and
gB = 24 bosonic ones such that the effective number of degrees of freedom

g∗(T ) = gB(T ) + 7
8 gf(T ) = 102.75 (33)

(the factor 7
8 accounts for the Pauli exclusion principle which applies for

the fermions). The four Higgses in the symmetric phase have equal masses,
and are very heavy. If all SM modes would be massless we would have
g∗(T ) = 106.75, which effectively applies for temperatures large relative to
about 2Mmax < 500 GeV, where Mmax is the upper bound for all running
SM masses in the range up to the transition point (see Fig. 2). Below the
transition point, we know that the one remaining physical Higgs is as light
as the other SM particles13. This shows that it need not be true that the
higher the energy the more relativistic degrees of freedom must show up.
The reason of course is that we crossed phase transition line.

Since the Higgs phase transition and inflation happen very early in
the thermal history of the universe at times when the universe is very
hot and dense (hot Big Bang), finite temperature effects must be included

12 In the broken phase, we have the mass coupling relations (29), which also must hold
for the bare parameters. These relations then tell us that linear (fermion masses)
and quadratic (boson masses) divergences are absent at the transition point. Except
for m, all other masses ideally vanish in the symmetric phase.

13 Highly relativistic particles then contribute ρrad(T ) = π2

30
g∗(T )T

4 to the radiation
density.
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in a realistic treatment of the EW phase transition and inflation [83–86].
The leading modification caused by finite temperature effects enters the
finite temperature effective potential V (φ, T ): while at zero temperature
V (φ, T = 0) = −µ2

2 φ2 + λ
24 φ

4 , at finite temperature we have

V (φ, T ) =
1

2

(
gT T

2 − µ2
)
φ2 +

λ

24
φ4 + . . . (34)

Usually, it is assumed that the Higgs is in the broken phase (µ2 > 0) and that
the EW phase transition is taking place when the universe is cooling down
below the critical temperature Tc =

√
µ2/gT . However, above the scale µ0

we are in the symmetric phase with −µ2 → m2
0 = m2 +δm2 > 0. As claimed

before, the phase transition is triggered by δm2 with m2
0 ' 1.74× 10−3M2

Pl.
In our case, we have T (µ = µ0) ' 1.62 × 1029 ◦K and T (µ = MPl) '
1.42×1032 ◦K such that we expect the EW phase transition to be triggered
by the bare Higgs mass in spite of the fact that the finite temperature term
gT T

2 is very large in the early universe. The SM coefficient gT is given
by [86]

gT =
1

4v2

(
2m2

W +m2
Z + 2m2

t +
1

2
m2
H

)
=

1

16

[
3 g2 + g′

2
+ 4 y2

t +
2

3
λ

]
,

(35)

and we can calculate its value near MPl given the effective couplings at MPl

listed in Table I. We estimate gT ≈ 0.0980. Therefore, near above the phase
transition point, where m2

0 = m2(µ2
0), the bare mass term is dominating.

Up at the Planck scale, the temperature term is expected to dominate in
general. However, this depends on the value of the renormalized m2-term
in the symmetric phase. Here and in the following, we assume that the
bare mass is dominated by the quadratically enhanced mass counterterm,
meaning we consider the renormalized m2 to satisfy m2 � δm2. Inflation as
well as EW phase transition scenarios certainly depend on this assumption.
As δm2(µ) is a running mass, which vanishes at µ0, the finite renormalized
m2 could come into play at a late stage of inflation, and could be related to
the value m ∼ 10−6MPl which has been extracted form observed inflation
properties as a preferred scalar mass in standard inflation scenarios. Such a
finite addition would not affect much the Higgs transition and the subsequent
EW phase transition. In any case, the phase transition seems to be triggered
quite generally by the sign flip of the bare mass term, as is illustrated in
Fig. 6. The EW phase transition can take place only after the Higgs mass
flip. Of course, our rough estimates are no substitute for a more careful
reanalysis of the EW phase transition.
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Fig. 6. The role of the effective bare mass in the finite temperature SM. Left: for
µ0 ∼ 1.4×1016 GeV (MH ∼ 126 GeV, Mt ∼ 173.5 GeV). Right: finite temperature
delayed transition for µ0 ∼ 6 × 1017 GeV (MH ∼ 124 GeV, Mt ∼ 175 GeV), the
m2

0 term alone is flipping at about µ0 ∼ 3.5× 1018 GeV.

Let us finally consider the behavior of v(µ) in some more detail. The
crucial point is that the running of v(µ) is determined by the anomalous
dimension of the Higgs potential parameterm2 and by the β-function related
to the renormalization of λ. Its behavior has been investigated recently in
Ref. [38]. For high energies, the second term of (25) is dominating, such that

µ2 d

dµ2
ln v2

(
µ2
)
∼ −βλ(µ)

λ(µ)
.

The behavior of λ(µ) and βλ(µ) has been studied recently in the context of
vacuum stability of the SM Higgs sector in Refs. [8–13, 16, 17] and reveals
that the beta function βλ is negative up to a scale of about 1.3× 1017 GeV,
where it changes the sign. As already mentioned, above the zero µλ of βλ,
the effective coupling starts to increase again and the key question is whether
at the zero of βλ the effective coupling is still positive. In the latter case,
it will remain positive although small up to the Planck scale. In any case,
at moderately high scales where βλ < 0, and provided λ is still positive the
following behavior is valid for the Higgs VEV

v2
(
µ2
)∣∣
µ2→∞ ∼

(
µ2
)−βλ(µ)

λ(µ) →∞ , (36)

which means that v2(µ2) is increasing at these scales (where βλ < 0 and
λ > 0). The analyses Refs. [8–13, 16, 18] find that λ turns negative (unstable
or meta-stable Higgs potential) before the beta function reaches its zero.
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This may happen at rather low scales around 109 GeV. Some consequences
we have mentioned above. In our approach, a zero of λ below the Planck
scale would represent an essential singularity. According to our analysis,
λ remains positive up to the zero of the beta function and as a consequence
up to the Planck scale in agreement with Refs. [19, 38].

If λ = 0 before βλ = 0, the SM cannot be valid beyond that point µ∗
where λ(µ∗) = 0. Note that in a renormalizable theory renormalization does
not induce non-renormalizable higher-order terms, so one really has to give
up the SM in its literal form. Here, one has to remember that the SM is
an effective theory only and at higher scales non-renormalizable operators
must come into play. The next relevant term would be ξ

Λ2
Pl

1
6!H

6 with positive
dimensionless coupling ξ, which keeps the system stable. Then, one has three
parameters in the relevant part of the potential m2, λ and ξ and one may
have more complicated vacuum structure, with metastable states etc. In
other words, the case λ < 0 cannot be discussed without extending the SM.

6. The impact on inflation

As the Higgs system persists to make sense back to times of the early
universe, it is attractive to think that the SM Higgs field itself is responsible
for the inflation era of the early universe, as originally thought by Guth [87]
(see also Refs. [88–93]). Major phenomenological input on inflation comes
from Cosmic Microwave Background observation, most recently from the
Planck mission (see Ref. [82] and references therein). The “inflation term”,
which comes in via the SM energy-momentum tensor, adds to the r.h.s. of
the Friedmann equation

`2
(
V (φ) + 1

2 φ̇
2
)
, (37)

where `2 = 8πG/3. MPl = (G)−1/2 is the Planck mass, G is Newton’s
gravitational constant and for any quantity X we denote time derivatives
by Ẋ. In this section dealing with physics near the Planck scale φ, V (φ), λ
and m denote the bare quantities (fields and parameters). Inflation requires
an exponential growth a(t) ∝ eHt of the Friedman–Robertson–Walker radius
a(t) of the universe, where H(t) = ȧ/a(t) is the Hubble constant at cosmic
time t.

The contribution of the Higgs to the energy momentum tensor amounts
to a contribution to energy density and pressure given by

ρφ = 1
2 φ̇

2 + V (φ) , pφ = 1
2 φ̇

2 − V (φ) . (38)

The second Friedman equation has the form ä/a = − `2

2 (ρ+ 3p) and the
condition for growth ä > 0, requires p < −ρ/3 and hence 1

2 φ̇
2 < V (φ).
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CMB observations strongly favor the slow-roll inflation 1
2 φ̇

2 � V (φ) condi-
tion and favors the dark energy equation of state w = p/ρ = −1. Indeed, the
Planck mission measured w = −1.13+0.13

−0.10. The first Friedman equation reads

ȧ2/a2 + k/a2 = `2 ρ and may be written as H2 = `2
[
V (φ) + 1

2 φ̇
2
]

= `2 ρ.

The kinetic term φ̇2 is controlled by Ḣ = −3
2`

2 φ̇2 related to the observa-
tionally controlled deceleration parameter q(t) = −äa/ȧ2. In addition, we
have the field equation

φ̈+ 3Hφ̇ = −V ′(φ) ≡ −dV (φ)/dφ . (39)

By inflation k/a2(t) → 0 (k = 0,±1 the normalized curvature), such that
the universe looks effectively flat (k = 0) for any initial k. Inflation looks
to be universal for quasi-static fields φ̇ ∼ 0 and V (φ) large positive. Then
a(t) ∝ exp(Ht) with H ' `

√
V (φ). This is precisely what the SM Higgs

system in the symmetric phase suggests, if in the Higgs potential λ remains
positive and the bare mass square m2 is positive too. As both λ and m2 for
the first time are numerically fairly well known, quantitative conclusions on
the inflation patterns should be possible solely on the basis of SM properties.
The leading behavior is characterized by a free massive scalar field with
potential V = m2

2 φ2, such that H2 = (ȧ/a)2 = `2 m2

2 φ2 and φ̈ + 3Hφ̇ =

−m2φ, which is nothing but a harmonic oscillator with friction. A constant
background field φ→ φ0 + φ would imply a dark energy term (cosmological
constant) of the right sign. In contrast, after the phase transition triggered
by the change of sign in the bare m2, the scalar VEV implies a cosmological
constant contribution − λ

24 v
4 of negative sign.

Note that, as required by the CMB horizon problem, the exponent Ht is
much larger than unity if φ exceeds the Planck mass at these times. Needed
is Ne ' Ht > 60 to solve the horizon problem. The inflation blow-up
exponent is given by

Ne = ln
a(tend)

a(tinitial)
=

te∫
ti

H(t) dt =

φe∫
φi

H

φ̇
dφ = − 8π

M2
Pl

φe∫
φi

V

V ′
dφ = H (te − ti) ,

(40)
and Ne = H (te− ti) is exact if H = constant i.e. when ρ = ρΛ is dominated
by the cosmological constant, as it is expected for the SM. In the symmetric
phase, V/V ′ > 0 and hence φi > φe. Note that a rescaling of the potential
does not affect inflation, but the relative weight of the terms is crucial. In
fact, SM Higgs inflation is far from being self-evident. A detailed analysis is
devoted to a forthcoming paper [94].

For the SM Higgs potential in the symmetric phase, denoting z ≡ λ
6m2 ,

and a potential V = V (0) + ∆V (φ) we have a term V (0)
2m2

1
φ

1
1+zφ2

plus ∆V
V ′ =
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φ
4

(
1 + 1

1+zφ2

)
and thus with

I=

φi∫
φe

V

V ′
dφ=

V (0)

2m2

[
ln
φ2

i

φ2
e

− ln
φi

2 z + 1

φe
2 z + 1

]
+

1

8

[
φ2

i − φ2
e +

1

z
ln
φi

2 z + 1

φe
2 z + 1

]

we obtain

Ne =
8π

M2
Pl

I . (41)

Note that V (0) = m2

2 Ξ+ λ
8 Ξ

2 with Ξ =
M2

Pl
16π2 ,m2 and z = λ

6m2 all are known
SM quantities! Ne large requires φi � φe. In our calculation, adopting
fixed parameters as given at the Planck scale, and φi ' 4.51MPl as an
initial field one obtains φe = −1.32 × 10−6MPl which yields Ne ≈ 65.83.
The Higgs field in this constant coupling approximation starts oscillating for
times t>∼ 200M−1

Pl . If we take into account the running of parameters as
given by the standard MS RG, we find φe ' 3.73×10−5MPl and Ne ≈ 65.05
a value not too far above the phenomenologically required minimum bound.
The Higgs field in this more adequate calculation is found to oscillate at
much later times but still before the Higgs transition (see Fig. 7 below).
A detailed analysis shows that the dynamical part of the Higgs potential
∆V (φ) decays exponentially, while V (0) the quasi cosmological constant is
weakly scale dependent through m2

0(µ) and λ(µ), but has a zero not far
above the Higgs transition point, as can be seen in Fig. 7 (see Ref. [94] for
details).

Fig. 7. The mass-, interaction- and kinetic-term of the bare Lagrangian in units of
M4

Pl as a function of time. The vacuum term V (0) gets nullified across the vacuum
rearrangement somewhat above the Higgs transition point.
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The inflation scenario suggested by the present analysis is a Gaussian
potential with small anharmonic perturbations, since m2 is predicted to be
large, while λ remains small. This picture should be valid in the renormaliz-
able effective field theory regime below about 1017 GeV. Going to higher en-
ergies, details of the cutoff system are expected to come into play, effectively
in form of dimension 6 operators as leading corrections. These corrections
are expected to get relevant only closer to the Planck scale. I expect that the
observed value of dark energy has to be considered as a phenomenological
constraint. The reason is that ρΛ is dependent on the Higgs field magnitude,
which is not fixed by other observations, except maybe by CMB inflation
data. In addition, we have to keep in mind that our scenario is very sensi-
tive to the basic parameters C(µ) and λ(µ), which were obtained by evolving
coupling parameters over 16 orders of magnitude in scale. This cries for high
precision physics to really settle the issue. High precision physics could be-
come the tool in probing and investigating early cosmology. Note that given
the SM couplings everything is essentially (besides the Higgs field strength)
an SM prediction without any extra assumption. What we also learn is
that the quartic “divergences” contributing to the vacuum energy, like the
quadratic “divergences” affecting the Higgs mass, play an important role in
promoting the SM Higgs to the inflaton, and inflation to be an unavoidable
consequence of the SM.

7. Summary and outlook

We adopt that the new particle found by ATLAS and CMS at the LHC is
the SM Higgs and we argue about the specific value found for the Higgs mass
MH = 125.9±0.4 GeV and its impact for the SM itself. As noted quite some
time ago in Ref. [6], stability of the SM vacuum up to the Planck scale is
just what it now turns out to be and this looks to be more than just an acci-
dent. It signals a higher self-consistency of the SM than anticipated before.
Provided the Higgs potential remains stable, there is no non-perturbative
Higgs issue, no Landau pole nor any other problem. Surprisingly, except
from the moderately increasing Abelian U(1)Y gauge coupling, all other
effective couplings behave asymptotically free, which renders Planck scale
physics accessible by perturbative methods. The amazing thing is that this
is the result of an intricate conspiracy of the several interactions “unified”
in the SM. Besides the Higgs self-coupling λ, the top-quark Yukawa cou-
pling yt, the strong interaction coupling αs, as well as the gauge couplings
g and g′ turn out to be important in the conspiracy responsible for the
stability of the SM ground state. Note that the full knowledge of the RG
coefficients is needed to obtain a stable solution, while approximations like
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the gaugeless one may suggest a false metastable situation. I also would say
that complete four-loop calculations of the β-function coefficients would be
highly desirable.

Concerning the vacuum stability, we should keep in mind: the Higgs
mass miraculously turns out to have a value as it was expected form vacuum
stability considerations, given the unexpectedly heavy top quark. As we have
seen, it is a tricky conspiracy among the SM couplings which allows for a
regular and stable extrapolation up to the Planck scale. If the SM misses
to have a stable vacuum, why does it just miss it almost not as several
related analyses Refs. [7–18] find? As also discussed in Refs. [95–97], very
different scenarios would follow if the main condition of vacuum stability
and the existence of a sign change of the Higgs potential mass term below
the Planck mass scale would not be satisfied. At present, the Higgs potential
stability issue looks to be almost entirely a matter of the precise value of
the MS top-quark Yukawa coupling at an appropriate matching scale. This
issue is not settled in my opinion. First of all, we are left with the question
what the top quark mass measured by experiments precisely means. For our
analysis, we have identified the PDG top-quark mass entry with the on-shell
mass. The second point concerns the missing higher order corrections in the
matching conditions, which could help to clarify the situation. Problems
in this direction have been discussed in Ref. [38] (see also Ref. [18] and
references therein).

If our LEESM scenario is realistic, meaning that there is no essential
non-SM physics up the Planck scale, the Higgs not only provides masses
to the SM particles, but also supplies the necessary dark energy triggering
inflaton. To settle the issues of inflation, the EW phase transition and baryo-
genesis, a very precise knowledge of the SM parameters becomes more crucial
than ever. To achieve much better control on SM parameter-evolution, over
16 orders of magnitude in scale, becomes a key issue of particle physics and
early cosmology. If we look at the leading coefficient of the quadratic di-
vergence (29), we see that the top Yukawa term is enhanced by a factor 6
relative to the Higgs coupling, which means that a precise top-quark Yukawa
coupling measurement is most crucial and should have highest priority at
an ILC, where a threshold scan could provide much more reliable informa-
tion (see e.g. [98–101]). This is, of course, an issue only if there is not a
lot of yet unknown stuff which could obscure the situation. Almost equally
important is a precise knowledge of the Higgs self-coupling. Especially, the
inflation data are constraining the possible values in (λ, yt)-plane atMPl dra-
matically. It is very surprising that such a possible window actually seems
to exist. It also implies that higher order perturbative corrections are more
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important than ever, as a tool to deepen our understanding of fundamental
phenomena. Precision physics maybe a key tool to monitor the unknown
bare physics at very high scales.

We understand the SM as a low energy effective emergence of some un-
known physical system, we may call it “ether”, which is residing at the Planck
scale with the Planck length as a “microscopic” length scale. Note that the
cutoff, though very large, in any case is finite. Correspondingly, counter-
terms are finite. In such a kind of low energy effective scenario, quadratic and
quartic “divergences” play an important role when we approach the bare sys-
tem at the Planck scale. One key quantity here is the Higgs mass countert-
erm, which is given by δM2

H =
M2

Pl
16π2 C(µ), with C(µ = MPl) ' 0.282, where

C is the coefficient of the quadratic divergence of the bare Higgs mass given
in Eqs. (2), (30). Note also that the bare mass m(µ = MPl)/MPl = 0.0295 is
almost two orders of magnitude below MPl. Note that in the broken phase
at the EW scale C(µ = v) ∼ −6.7. Our main observation is that for appro-
priate input parameters the quadratically enhanced Higgs mass counterterm
as a function of the renormalization scale exhibits a zero somewhat below
the Planck scale. The zero implies a change of sign of the bare Higgs mass,
which is responsible for the Higgs mechanism as a first order phase tran-
sition at about µ0 ∼ 1.4 × 1016 GeV in the T = 0 SM. Above this scale,
the system is in the unbroken phase i.e. the Higgs VEV is vanishing and all
modes besides the remaining complex Higgs doublet fields are ideally mass-
less. The second quantity which is dramatically enhanced by cutoff effects
is the cosmological constant V (0) = 〈V (φ)〉 (Higgs vacuum loops), which
yields a contribution to the dark energy density δρΛ =

M4
Pl

(16π2)2
X(µ), where

X(µ) = 1
8 (2C(µ) + λ(µ)) with X(µ = MPl) ' 0.088. As λ(µ0) is small

X(µ) has a zero not far below the zero of C(µ). Thus, as for the Higgs
mass, there is a matching point between the renormalized low energy cos-
mological constant and the bare one seen at short distances. Again, that the
bare cosmological constant is huge in the symmetric phase is not in conflict
with the observed tiny dark energy density of today.

In the symmetric phase, we naturally have very heavy Higgses, while
the light Higgs in the broken phase is a consequence of the phase transition
itself, because all SM masses, including the Higgs itself, are proportional
to the Higgs VEV v, which is an order parameter and hence naturally is
a low energy quantity. The key point is that before the Higgs mechanism
has taken place, the large positive bare Higgs mass-square term in the Higgs
potential provides a huge dark energy term which triggers inflation and the
four heavy Higgses represent the inflaton. Slow-roll inflation ends because of



The Standard Model as a Low-energy Effective Theory: What is Triggering . . . 1203

the exponential decay of the Higgs fluctuation fields after short time, while
V (0) persists to be large until it is nullified somewhat before the Higgs
transition point and the subsequent EW phase transition.

The EW phase transition, due to finite temperature effects, takes place
always a little below the Higgs transition scale. In our case, the EW tran-
sition essentially coincides with the Higgs transition, i.e. it takes place at
µ0 ∼ 1.4× 1016 GeV not near µ ∼ v ' 246.22 GeV or elsewhere far below a
typical GUT scale. This must have a definite impact on baryogenesis, and
commonly accepted assumptions (see e.g. Refs. [86, 102–105] and references
therein) have to be reconsidered.

In the symmetric phase, during inflation, the heavy Higgses decay into
massless fermions, which provides the reheating of the universe which dra-
matically cools down by the inflation. The Higgs decay width Γ (H →
f̄f) =

MH y2f
16π can be large for massless fermions, depending on the Yukawa

couplings. Produced are preferably the modes with largest Yukawa coupling
like the yet massless tt̄-, tb̄-, bt̄-pairs, the latter two modes via the “charged”
Higgses and rates proportional to ytyb. While bb̄-production is suppressed
by y2

b/y
2
t (MPl) ∼ 4.4× 10−4, τ -production follows with a branching fraction

y2
τ/(3 y

2
t )(MPl) ∼ 2.4× 10−4 etc. During and/or shortly after the EW phase

transition, the heavier quarks decay into the lighter ones (the strongly cou-
pled into the weakly coupled) channeled by the CKM-matrix [106]. There-
fore, most of the normal matter is a decay product of top and bottom quarks
and their anti-quarks. In this scenario, most normal matter must have under-
gone CP-violating decay processes. This is certainly an important ingredient
for baryogenesis.

Here, we also should remind that QED, the electric charge assignments
and massless photon radiation etc. are only defined after symmetry breaking
SU(3)c⊗ SU(2)L⊗U(1)Y → SU(3)c⊗U(1)em. This certainly requires more
detailed studies including the question which scalars couple to the vacuum.
Another interesting aspect: in the symmetric phase SU(2)L is unbroken in
the very early phase of the universe. In the symmetric phase, there could
exist heavy SU(2) bound states14 which would bind energy and could be
dark matter candidates. Thus cold dark matter could be frozen energy,
very similar to ordinary matter, which is mainly hadronic binding energy
(nucleon masses), while the masses of the elementary fields induced by the
Higgs mechanism constitute an almost negligible contribution to normal
matter in the universe. The way matter clusters and populates the universe
is, of course, determined by the details of the Yukawa- and Higgs-sector and
the particular form of the EW phase transition.

14 Note that the basic parameters of this SU(2) is known and below close to the Planck
scale actually has a coupling slightly stronger than the one of the SU(3) sector (see
Table I).
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A final remark about the reliability of numerical estimates given: precise
numbers are expected to change not only when input parameters change,
but may be affected by including higher order corrections. The role of what
matching conditions precisely are used and justified to convert physical into
MS parameters remains a key issue. One also should be aware that what we
used as a Planck scale in terms of the MS scale µ may differ by non-trivial
factors. If the Planck medium would be a lattice of spacing aPl the effective
Planck energy scale could be Λ̃Pl = π/aPl = πMPl a factor of π higher than
what we have assumed throughout the analysis. A similar ambiguity may be
due to the convention adopted when defining the MS scheme. We may ask
whether the minimal MS parametrization would not be more closely related
to the bare parameters, relevant at the Planck scale, than the MS ones. We
have lnµ2

MS = lnµ2
MS

+ γ− ln 4π thus µMS/µMS = exp ln 4π−γ
2 ' 2.66, which

tells us that we should be aware of the fact that the identification of the
renormalization scale with a physical Planck scale may be fairly arbitrary
within some O(1) factors. What it means is that the matching scale looks to
be ambiguous within a factor ∼ 3, while the beta-functions do not change.
While the MS parametrization is fixed at the EW scale phenomenologically
(up to possible matching condition uncertainties) it is conceivable that the
identification µ = MPl is requiring phenomenological adjustment as well,
via indirect constraints from properties of the EW phase transition and the
observed inflation profile, for example.

We have not discussed the possibility that the sterile right-handed neu-
trinos, which must exist in order to allow for non-vanishing neutrino masses,
are Majorana particles. In this case, it would be natural that the singlet Ma-
jorana neutrinos have huge masses in the symmetric as well as in the broken
phase, not protected by any of the SM symmetries. As is well known, this
would provide the most natural explanation for the smallness of the neu-
trino masses by the resulting seesaw mechanism. When the singlet neutrino
mass term is very high near MPl it would not affect the running of the other
couplings also because a singlet has not any direct couplings to other fields.
In addition, as the singlet Majorana mass is not subject to mass-coupling
relations (it is intrinsic and not generated by a Higgs type mechanism) it
is actually decoupling, although it leaves its trace in scaling the neutrino
masses to very small values. Nevertheless, it would be interesting to inves-
tigate the scale dependence of the effective heavy Majorana masses and to
study their influence on inflation, the EW phase transition and the dark
matter problem, within the LEESM framework.
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We also remark that gravity as we see it at long distances in our scenario
emerges form the “ether” system exhibiting an intrinsic fundamental cutoff.
Therefore, there is no reason why we should expect gravity to be quantized
in the sense of a local relativistic renormalizable QFT at the Planck scale.
Also for gravity the low energy manifestation is expected to be what is
obtained from a low energy expansion (see Ref. [32] for a corresponding
consideration).

Our findings do not exclude the existence of new physics as far as it
does not spoil the gross features of the SM which are important: the sta-
bility of the Higgs potential and the existence of a zero in the coefficient
of the quadratic divergences. Also important for the understanding of the
today very small dark energy density is the zero in the coefficient of the
corresponding quartically enhanced contribution.

In any case, after all relevant ingredients of the SM are confirmed and
parameters have been determined within narrow error bands, many issues in
early cosmology are likely direct predictable consequences of properties of the
Higgs system and its embedding into the SM. This insight opens completely
new possibilities for the solution of open problems. So far, the LEESM
scenario has more phenomenological support than any of the other known
beyond the SM scenarios. However, the inflation scenario is very sensitive to
the precise SM parameter input values. This is not surprising as we try to
extrapolate over 16 orders of magnitude in scale. In addition, there are two
unknown inputs in the game which affect inflation. One is the magnitude of
the Higgs field near the Planck scale, the other the renormalized mass m in
the symmetric phase. These two inputs are constrained by what we think
to know about inflation, slow-roll, equation of state, Gaussianity, spectral
index, in particular. After all, the SM hides more secrets than answers
and we are far from having worked out all its consequences nor have we
understood many of its why so’s. This is an attempt to understand the SM
as a conspiracy theory. More and more the SM looks to me to work like a
fine Swiss clockwork.

As a final remark about the role of the SM Higgs let me point out the
following: for some time at and after the Big Bang, the Higgs is the particle
which is directly attached to gravity. It is the only SM particle which directly
talks to the vacuum in the early universe (much later after the QCD phase
transition also quark and gluon condensates develop VEVs). The Higgs is
the one producing negative pressure and hence blowing continuously energy
into the expanding universe. Amazingly, understanding the physics of the
early universe now depends vitally on the precise determination and under-
standing of parameters like the top-quark mass and the Higgs mass, and the
precise values of their couplings. Seeing more of the “ether” residing at the
Planck scale is now a matter of high precision physics.
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The key questions are “Where in SM or SM+ parameter space is the
hot spot, which makes the Higgs be the inflaton?”, “Does the Higgs play the
master role in the early evolution of our universe?”. Higher order effects,
moderate additions to the SM like a Peccei–Quinn [107] axion sector and
its impact on the strong CP problem could still also play a role in the fine-
tuning conspiracy. On the other hand, what looks to be a straightforward
possible renormalizable extension of the SM like a fourth fermion family
seems to be definitely ruled out in our scenario.

In any case, our LEESM Higgs scenario offers a number of new aspects
not considered so far and are worth being investigated in much more detail.
Key point of the present analysis are the MS input parameters at the Z mass
scale, evaluated in terms of the matching conditions as studied in Ref. [38]
for central values MH = 126 GeV and Mt = 173.5 GeV. Any kind of
possible and necessary fine tuning, by adjusting λ(MH) or yt(Mt), has not
been analyzed in detail so far. Moderate tuning or more accurate predictions
of the SM input certainly will provide a more reliable prediction of the SM
Higgs inflation pattern. The sensitivity to details is pronounced. The more
it is remarkable that we found the spot where the SM provides dark energy
and inflation “automatically”, and reasonably close to what we know from
observation. For the first time we have a chance to get information about
inflation from the SM alone and we can make predictions which are not just
more or less direct consequences of some more of less plausible assumptions.
The main new point is that we find the Higgs potential to be stable up to the
Planck scale and that the coefficient of the M2

Pl enhanced Higgs potential
mass term changes sign sufficiently below the Planck scale.

I am grateful to Mikhail Kalmykov for many inspiring discussions, for
critically reading the manuscript as well as for long-time collaboration in
electroweak two-loop calculations and, in particular, on working out the re-
lationship between on-shell and MS parameters in the SM, which play a key
role in the present work. I would like to thank Oliver Bär, Nigel Glover and
Daniel Wyler for their interest and for many clarifying discussions. I also
thank for support by the EC Program Transnational Access to Research In-
frastructure (TARI) INFN—LNF, HadronPhysics3 — Integrating Activity,
Contract No. 283286.
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Appendix

The ingredients for one-loop matching

The one-loop on-shell counterterms may be expressed in terms of the
known scalar integrals

A0(m) = −m2
(
Reg + 1− lnm2

)
B0(m1,m2; s) = Reg−

1∫
0

dz ln
(
−sz(1− z) +m2

1(1− z) +m2
2z − iε

)
,

with

Reg =
2

ε
− γ + ln 4π + lnµ2

0 ≡ lnµ2 .

In addition, we define C =
√

2Gµ
16π2 and Cµ =

√
2Gµ

16π2 lnµ2. Furthermore, c2
W =

M2
W

M2
Z

and s2
W = 1 − c2

W . Sums over fermion contributions we write
∑

fs
for

sums over individual fermions, and
∑

fd
for sums over fermion doublets. Qf

denotes the fermion charge, af = Qf s
2
W ∓

1
4 the Zff̄ vector coupling and

by bf = ±1
4 the axial–vector couplings. A color factor Nc = 3 applies for

quarks.
MS counterterms:

δv−1

v−1

∣∣∣∣
MS

= +Cµ

(
3
M4
Z

M2
H

+ 6
M4
W

M2
H

− 3

2
M2
Z − 3M2

W +
3

2
M2
H

+
∑
fd

[
−4

m2
1 +m2

2

M2
H

+m2
1 +m2

2

])
,

δM2
Z

M2
Z

∣∣∣∣
MS

= +Cµ

(
− 6

M4
Z

M2
H

− 12
M4
W

M2
H

+
11

3
M2
Z +

14

3
M2
W − 28 c2W M2

W − 3M2
H

+
∑
fs

[
8
m4

f

M2
H

− 2m2
f +

22

27

(
M2
Z − 2M2

W

)
+

40

27
c2WM

2
W

])
,

δM2
W

M2
W

∣∣∣∣
MS

= +Cµ

(
− 6

M4
Z

M2
H

− 12
M4
W

M2
H

+ 3M2
Z −

68

3
M2
W − 3M2

H

+
∑
fd

[
8
m4

1 +m4
2

M2
H

− 2
(
m2

1 +m2
2

)
+

4

3
M2
W

])
,

δM2
H

M2
H

∣∣∣∣
MS

= +Cµ
(
− 3M2

Z − 6M2
W + 3M2

H +
∑
fs

[
2m2

f

])
,
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δmt

mt

∣∣∣∣
MS

= +Cµ
(

12
M4
t

M2
H

+ 12
M4
b

M2
H

− 3
M4
Z

M2
H

− 6
M4
W

M2
H

− 3

2
M2
b +

3

2
M2
t −

4

3
M2
Z

+
20

3
M2
W −

16

3
c2W M2

W −
3

2
M2
H −

16

3
c2W s2W M2

Z

)
,

δmb

mb

∣∣∣∣
MS

= +Cµ
(

12
M4
t

M2
H

+ 12
M4
b

M2
H

− 3
M4
Z

M2
H

− 6
M4
W

M2
H

+
3

2
M2
b −

3

2
M2
t +

2

3
M2
Z

+
2

3
M2
W −

4

3
c2W M2

W −
3

2
M2
H −

4

3
c2W s2W M2

Z

)
,

On-shell counterterms:

δe

e
= C s2WM2

W

38

3
+ 14

A0(MW )

M2
W

− 8

3

∑
fs

Q2
f

(
1 +

A0(mf)

m2
f

) ,

δv−1

v−1
=

δe

e
− 1

2 s2W

(
s2W

δM2
W

M2
W

+ c2W
δM2

Z

M2
Z

)
,

δM2
H = C

(
A0(MH)

(
3M2

H

)
+A0(MZ)

(
M2
H+6M2

Z

)
+B0

(
MH ,MH ,M

2
H

) (
9
2 M

4
H

)
+B0

(
MZ ,MZ ,M

2
H

)(
1
2M

4
H−2M2

HM
2
Z+6M4

Z

)
+A0(MW )

(
2M2

H+12M2
W

)
+B0

(
MW ,MW ,M

2
H

) (
M4
H − 4M2

HM
2
W + 12M4

W

)
+
∑
fs

[
A0 (mf)

(
−8m2

f

)
+B0

(
mf ,mf ,M

2
H

) (
2M2

H m
2
f − 8m4

f

)])
,

δM2
Z = C

(
− 2

3
M2
HM

2
Z+4

M4
Z

M2
H

M2
Z−

2

9
M4
Z+8

M4
W

M2
H

M2
Z−

20

9
M2
WM

2
Z +

16

3
M4
W

−16c2WM
4
W +A0(MH)

(
1

3
M2
H+2M2

Z

)
+A0(MZ)

(
−1

3
M2
H+6

M4
Z

M2
H

+
2

3
M2
Z

)
+A0(MW )

(
12
M2
W

M2
H

M2
Z +

16

3
M2
W − 16 c2W M2

W +
2

3
M2
Z

)
+B0

(
MZ ,MH ,M

2
Z

)(
−4

3
M2
HM

2
Z +

1

3
M4
H + 4M4

Z

)
+B0

(
MW ,MW ,M

2
Z

)(16

3
M2
W M2

Z −
68

3
M4
W − 16 c2W M4

W +
1

3
M4
Z

)
+
∑
fs

[(
32

3
M2
Z m

2
f −

16

9
M4
Z

)(
a2f + b2f

)
+A0(mf)

(
−8

M2
Z

M2
H

m2
f +

32

3
M2
Z

(
a2f + b2f

))
+B0

(
mf ,mf ,M

2
Z

)(32

3
M2
Z m

2
f

(
a2f − 2b2f

)
+

16

3
M4
Z

(
a2f + b2f

))])
,
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δM2
W = C

(
− 2

3
M2
HM

2
W + 8

M6
W

M2
H

+ 4
M4
Z

M2
H

M2
W −

112

9
M4
W −

2

3
M2
ZM

2
W

+A0 (MH)

(
2M2

W +
1

3
M2
H

)
+A0(MZ)

(
6
M2
Z

M2
H

M2
W +

8

3
M2
W − 8 c2WM

2
W +

1

3
M2
Z

)
+A0(MW )

(
12
M4
W

M2
H

− 4M2
W −

1

3
M2
H −

1

3
M2
Z

)
+B0

(
MH ,MW ,M

2
W

)(
−4

3
M2
HM

2
W +

1

3
M4
H + 4M4

W

)
+B0

(
MZ ,MW ,M

2
W

)(
−68

3
M4
W−16 c2WM

4
W +

1

3
M4
Z+

16

3
M2
ZM

2
W

)
+B0

(
0,MW ,M

2
W

) (
−16 s2WM

4
W

)
+
∑
fd

[
4

3
M2
W

(
m2

1 +m2
2

)
− 4

9
M4
W

+A0(m1)

(
−8

M2
W

M2
H

m2
1 +

4

3
M2
W −

2

3

(
m2

1 −m2
2

))
+A0(m2)

(
−8

M2
W

M2
H

m2
2 +

4

3
M2
W +

2

3

(
m2

1 −m2
2

))
+B0

(
m1,m2,M

2
W

)(4

3
M4
W−

2

3
M2
W

(
m2

1+m2
2

)
− 2

3

(
m2

1−m2
2

)2)])
,

δmτ = mτ C

(
4
M4
W

M2
H

+ 2
M4
Z

M2
H

− 3M2
W +

3

2
M2
Z

+A0(MH) +A0(MZ)
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M2
Z

M2
H
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W
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τ
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2

M2
Z

m2
τ

)
+A0(MW )

(
6
M2
W

M2
H

− M2
W

m2
τ
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τ
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τ
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τ
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δMb = Mb C
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The on-loop corrections give the dominant contribution in the matching
relations. Two-loop results may be found in Ref. [54, 55, 81] and in Refs.
quoted in Section 3.
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