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We consider the Ginzburg–Landau model of a superconductor in three
dimensional Lobachevsky space. Generally, covariant Ginzburg–Landau
equations were derived and two types of solutions of these equations were
obtained: with a flat and cylindrically symmetric boarders of superconduc-
tors. The first case is considered in the quasi-Cartesian coordinates system
and it is shown that when the radius of curvature of Lobachevsky space ρ
is less than a double quantity of the London penetration depth λ, magnetic
field might increase with penetration depth. In the second case, which stud-
ies cylindrically symmetric superconductor, it is shown that magnetic field
depends on two coordinates: depth penetration and coordinate along the
surface of the superconductor. When radius of curvature ρ of Lobachevsky
space goes to infinity, derived solutions and equations will go to the usual
Ginzburg–Landau model in flat space.
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1. Introduction

The Meissner effect describes expulsion of magnetic field from a super-
conductor [1, 2] and dual effect to this phenomenon probably could help to
explain confinement [3–5]. At the same time, model of Ginzburg–Landau
is an example of the non-relativistic Higgs mechanism. In consideration of
these facts and since some quantum-mechanical models in non-Euclidean
space are used for construction of phenomenological models of component
particles and nanoparticles [6–8], we suppose that nonlinear model could help
to improve some of them. In addition, non-trivial curvature, which is not
originated by geometry of space, have an effect on some physical processes
[9]. Moreover, some models of a superconductor in a non-Euclidean space
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play significant role for field-theoretic models with a dynamically break sym-
metry [10, 11] and for models that are constructed on holographic methods
for condensed matter [12].

The current paper is dedicated to formulation of the Ginzburg–Landau
model in Lobachevsky space and investigation of influence of the additional
parameter — radius of curvature of Lobachevsky space.

2. Formulation of equations

Let us consider the free energy of Ginzburg–Landau model in generally
covariant form

F = Fn +

∫ (
α|Ψ |2 + β|Ψ |4

2
+

1

4m

∣∣∣∣−i~∇µΨ − 2e

c
AµΨ

∣∣∣∣2
+

(
εµνλ∇νAλ

)2
8π

)√
|g|dV , (1)

where Fn is free energy of superconductor in the normal state, m and e is
a mass of electron and its charge correspondingly, Aλ is a vector potential,√
|g|dV is an invariant volume, α, β are constants of the system, Ψ is a

wave function of superconducting electrons, Greek indices µ, ν, etc., run
over three coordinate labels, ∇ν is a covariant derivative, εµνλ = eµνλ√

|g|
and

eµνλ is the Levi–Civita symbol.
Normalization of the wave function is the following |Ψ |2 = ns

2 — density
of superconducting pairs. Minimizing of variation of free energy (1) with
respect to Ψ∗ yields the first Ginzburg–Landau equation

αΨ + β|Ψ |2Ψ +
1

4m

(
−i~∇µ −

2e

c
Aµ

)2

Ψ = 0 . (2)

There was used Stokes’s theorem
∫
∇ν (δΨ∗Aν)

√
|g|dV =

∮
δΨ∗Aν

nν
√
|γ|dS, where γ is a determinant of the induced metric on a surface S,

which bounds a volume V . The second Ginzburg–Landau equation can be
obtained from a variation of free energy (1) with respect to the vector po-
tential Aλ

ei~
2m

(Ψ∗∂νΨ − Ψ∂νΨ∗) +
2e2

mc
|Ψ |2Aν +

c

4π
εεµηgνη∂µ

((
ελτσ∂τAσ

)
gελ

)
= 0 .

(3)
For these equations the condition was used that variation δAλ on the surface
of superconductor S equals zero, since external magnetic field is fixed. In this
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paper, only simple connected superconductors are considered, hence, the
wave function of superconductive electrons can be led to a real function due
to gauge transformation. In this case, the first term in equation (3) is null.
One can show that the calculation of the rotor of equation (3) gives the
following result

λ2ενµδ∂µ (gηδε
σηρ∂σ (Hρ))−Hν = 0 , (4)

where λ2 = c2m
4πnse2

is the square of the London penetration depth. When
space is flat, equations (4) go to common London equations [2] that usually
are used for description of the Meissner effect. Since it is important to have
the form of external magnetic fields in Lobachevsky space, superconduc-
tors is considered in two special coordinate systems where features of some
magnetic fields have been studied [13, 14].

3. Solutions of London equations in Lobachevsky space

3.1. Superconductor with a flat boarder

Let us consider equations (4) in the quasi-Cartesian system

dl2 = e
− 2z
ρ
(
dx2 + dy2

)
+ dz2 , (5)

where ρ is a curvature of Lobachevsky space. We choose coordinate system
in the following way: axis z is a normal to the surface of superconductor
and when z > 0, the medium is superconductive. The external magnetic
field is directed along the superconductor and along the axis x. In this case,
equation (4) has the form

λ2e
2z
ρ ∂z∂z

(
e
− 2z
ρ Hx(z)

)
−Hx(z) = 0 . (6)

General solution of the equation (6) is

Hx(z) = C1e
z
(

2
ρ
− 1
λ

)
+ C2e

z
(

2
ρ
+ 1
λ

)
, (7)

where C1 and C2 are constants.
Boundary conditions are chosen so that magnitudes of the magnetic field

in flat space (ρ→∞) are Hx(0) = H0 and Hx(∞) = 0. Hence, the solution
for this system has the form

Hx(z) = H0e
z
(

2
ρ
− 1
λ

)
. (8)

The graphic for this solution with different values of the curvature of Loba-
chevsky space is shown in figure 1.
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Fig. 1. The magnetic field dependence of the penetration depth with different values
of curvature of Lobachevsky space. The solid line describes solution in flat space,
the dashed line — Lobachevsky space with different value of curvature.

Figure 1 shows that when ρ < 2λ, the magnetic field will increase with
the penetration depth. The ratio of magnetic field penetration depths into
a superconductor in curved and flat space equals to e

2
ρ . Note that according

to the Maxwell equations, the current of superconductive electrons in this
system depends on value of curvature js = c

4πH0

(
2
ρ −

1
λ

)
. Consequently,

the ratio of currents in curved and flat space differs from unity only because
of the component 2λ

ρ .

3.2. Cylindrically symmetric superconductor

By analogy with the previous case, let us consider a cylindrically sym-
metric superconductor in the horospheric coordinate system

dl2 = e
− 2z
ρ
(
dr2 + r2dϕ2

)
+ dz2 . (9)

For this metric, equation (4) has the form

λ2
e

2z
ρ

r
∂r (r∂rH

z(r, z))−Hz(r, z) = 0 . (10)

General solution for this equation is

Hz(z, r) = C3J0

(
ie
− z
ρ r

λ

)
+ C4Y0

(
− ie

− z
ρ r

λ

)
, (11)

where J0 — Bessel function of the first kind, Y0 — Bessel function of the
second kind, C3 and C4 are constants.
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Let us consider cylindrically symmetric superconductor with the follow-
ing boundary conditions: on the boarder Rb of its surface magnetic field
equals to H0 and when ρ→∞, we will have decaying solution for cylindri-
cally symmetric superconductor in flat space. Let us choose the direction
of z axis along the surface of the superconductor. In this case, solution for
magnetic field in the cylindrically symmetric superconductor in Lobachevsky
space has form

Hz(z, r) = H0J0

(
ie
− z
ρ r

λ

)
/J0

(
ie
− z
ρRb

λ

)
. (12)

The magnetic field dependence of the penetration depth with different values
of z for cylindrically symmetric superconductor in Lobachevsky space with
curvature ρ = 10λ is shown in figure 2.

Fig. 2. The magnetic field dependence of the penetration depth with different values
of z in Lobachevsky space with curvature ρ = 10λ. The dashed line describes
solution in flat space, dot-dashed line for the case when z > 0 and solid line for the
case when z < 0.

4. Conclusion

In this paper, we consider the Ginzburg–Landau model in Lobachevsky
space and the generalized London equation was obtained in space with a con-
stant curvature. Two types of solution of magnetic field for superconductors
in Lobachevsky space were found: superconductor with a flat boarder and
cylindrically symmetric superconductor. For the first case, it was shown that
in Lobachevsky space magnetic field can grow with the penetration depth



1260 Yu.A. Kurochkin, I.Yu. Rybak

and the second case shows that in Lobachevsky space there can occur a sit-
uation when magnetic field depends on two coordinates: depth penetration
and coordinate along the surface of the superconductor. These effects are
not significant if we consider curvature as a cosmological parameter, but it
can play a crucial role if we model compound particles or nanoparticles.

We would like to thank E.A. Tolkachev for useful advice.
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