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The aim of the present study is to show that the redefinition of the
factorization scale Qi → ziQi in the ladder can be traded exactly for the
NLO correction to the LO evolution kernel, P (z)→ P (z)+(2CFαs/π)∆(z).
The above observation was done/exploited in the literature, but the present
study demonstrates how this phenomenon is realized within the Markovian
Monte Carlo parton shower hence it might be relevant in MC practice.
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1. Introduction

In the collinear factorization, the factorization scale Q limits transverse
phase space of all emitted particles. Typical practical choices of Q are: virtu-
ality of the emitter parton at the end of the multiple emission process, maxi-
mum transverse momentum or maximum rapidity of all emitted partons, µF
of the dimensional regularization, total energy in the hard process

√
ŝ, etc.

Redefinition of the factorization scale may involve factor z being the relative
loss of the energy of the emitter: Q→ zσQ, z = xn/x0

1, σ = ±1,±2. Many

∗ Presented at the Cracow Epiphany Conference on the Physics at the LHC, Kraków,
Poland, January 8–10, 2014.

1 Variable xi is the standard lightcone (Bjorken) variable of the emitter parton after
ith emission, i = 1, 2, 3, . . . n.
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examples can be found in the literature, for instance: (i) change from µF to
virtuality in the hard process coefficient function [1], (ii) change from time-
like to space-like ladder in the Curci–Furmanski–Petronzio (CFP) calcula-
tion of NLO kernels [2], (iii) change from angular- to kT-ordering in the mod-
elling of low x structure function by Catani–Ciafaloni–Fiorani–Marchesini
(CCFM) [3].

The aim of the present study is to show that the redefinition of the
factorization scale Q → zσQ in the ladder can be traded exactly for the
NLO correction to the LO evolution kernel, P (z)→ P (z)+σ(2CFαs/π)∆(z).
Without a loss of generality, in the numerical exercise we shall opt for σ = 1.
As already said, the above observation was already done/exploited in the
literature. Here, the above mechanism will be demonstrated numerically, in
a form which can be useful in the construction of the Monte Carlo parton
shower with the built in NLO evolution of the showers [4].

2. Simplified DGLAP evolution
in the Markovian Monte Carlo form

For our numerical exercise, we shall use simplified DGLAP evolution in
the Markovian Monte Carlo form. We consider an incoming quark which
emits gluons, before it enters the hard process. Its energy distribution
D(T, x) is a function of the evolution time T = lnQ2. The DGLAP evolution
equation [5] reads2

∂

∂T
D(T, x) =

2αs(T )

π

1∫
x

dz

z
P (z)D

(
T,
x

z

)
=

2αs(T )

π
[P (·)⊗D(T, ·)] (x) ,

(2.1)
where x is a part of initial energy (more precisely lightcone variable) left
after the emissions of a gluon from a quark. The running QCD coupling
constant is αs(T ) = 4π/(2β0(T − lnΛ0)) [6], where β0 is that of Ref. [7] and
Λ0 is the QCD scale parameter. However, for the sake of simplicity, we shall
adopt constant αs in the following numerical exercises. The evolution kernel
P (z) is given by

P (z) = CF

{
1 + z2

2(1− z)+
+

3

4
δ(1− z)

}
= −P δ(ε)δ(1− z) + P θ(ε, z) , (2.2)

2 We are using the following shorthand notation
(f(·)⊗ g(·)) (x) ≡

∫ 1

0
dzdyf(z)g(y)δ(x− yz).
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where

P θ(ε, z) =
CF

2

1 + z2

1− z
θ(1− z − ε) ,

P δ(ε) =

1∫
0

dz P θ(ε, z) = CF

[
ln

(
1

ε

)
− 3

4

]
, (2.3)

ε→ 0 is an infrared regulator and CF = 3
4 is the colour-group factor. P δ(ε)

is deliberately chosen to be positive — it is uniquely determined from the
baryon number conservation condition,

∫ 1
0 dz P (z) = 0.

The iteration of the above evolution equation leads to the following so-
lution

D(T, x) = e−Φ(T,t0)D(t0, x) + +
∞∑
n=1

T∫
t0

n∏
i=1

[dtiθ(ti − ti−1)] e−Φ(T,tn)

×
n∏
j=1

[
2αs(tj)

π
P θ(ε, ·)e−Φ(tj ,tj−1)⊗

]
D(t0, ·)(x) , (2.4)

where the Sudakov form-factor Φ(T, t0) is given by Φ(T, t0) =
∫ T
t0
dt′ 2αs(t′)

π

P δ(ε).
On the other hand, the exact solution of the evolution equation for

D(T, x) can be obtained with high numerical precision from the Markovian
Monte Carlo program. The probability distribution for generating single
Markovian step forward, that is generating the next (t, x) starting from the
previous (t0, x0), is given by

p(t, x|t0, x0) = θ(t− t0)
2αs(t)

π
P θ
(
ε,
x

x0

)
e−Φ(t,t0) ,

∞∫
t0

dt

x0∫
0

dx p(t, x|t0, x0) = 1 . (2.5)

Our toy model Markovian Monte Carlo algorithm works as follows:

• x0 is generated according to D(x0) = 3(1− x0)2,
∫ 1
0 dx0 D(x0) = 1.

• ti = ln(Qi) and zi = xi
xi−1

are generated in a loop according to
p(ti, xi|ti−1, xi−1) for i = 1, 2, 3, . . .

• The Markovian process (loop) is terminated at i = N , when tN+1 > T
for the first time.
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• The above procedure is repeated many times and the resulting distri-
bution of the final x = xN will be distributed according to D(T, x),
being the solution of the evolution equation, see Ref. [8] for more de-
tails.

2.1. The ∆-function of CFP

In the perturbative QCD, the evolution kernel P (z) is calculable order
by order

P (αs, z) = P (0)(z) +
(αs

2π

)1
P (1)(z) +

(αs

2π

)2
P (2)(z) + . . . , (2.6)

where P (0)(z), P (1)(z) and P (2)(z) are the leading (LO), next-to-leading
(NLO) and next-to-next-to-leading order (NNLO) approximations, respec-
tively. LO kernels are known since DGLAP works [5], while NLO kernels
were obtained directly from the Feynman diagrams in Ref. [2]. In the same
reference, it was noticed that NLO corrections to the kernels for the initial
state ladder differ from the ones for final state by (αs

2π )C
2
F∆(z) where

C2
F∆(z) =

[
P (0)(·)⊗

(
ln(·) P (0)(·)

)]
(z) (2.7)

and the LO kernel P (0)(z) = P (z) is that of Eq. (2.2). The above ∆-function
is easily calculable

∆(z) =

1∫
0

dx

{
θ(x > z)

x

1 + x2

2(1− x)
ln(y)

1 + y2

2(1− y)

∣∣∣∣
y=z/x

− 1 + x2

2(1− x)
ln(y)

1 + y2

2(1− y)

∣∣∣∣
y=z

}

=
1 + z2

2(1− z)
ln z

[
ln

(1− z)2

z
+

3

2

]
+

1 + z

8
ln2 z − 1− z

4
ln z . (2.8)

This function is visualised in figure 1. It obeys the sum rule
∫ 1
0 dz ∆(z) = 0

due to
∫ 1
0 P

(0)(z)dz = 0.
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Fig. 1. The ∆-function of Curci–Furmanski–Petronzio.

3. ∆-function of CFP in the framework of Markovian MC

In the following, we are going to show with the help of the Markovian
Monte Carlo that the change of the time limit from T to (T + lnx) induces
a NLO correction to the evolution kernel being C2

F
αs
π ∆(z).

In the CFP work, the ∆-function is generated by the factor xε, see
Eq. (2.61) in [2]. Attributing the above factor to rescaling of the factorization
scale µ→ µ/x and defining T = lnµ, this results in the shift T → T + lnx.

In our algorithm, this change is realized in a slightly different way: by
means of decreasing the value of the time limit T , step by step, in every
iteration of the loop: after accepting a given step (by means of checking
whether tnew < T is satisfied), we change the value of time limit T at the
ith step in the following way:

T → T + ln(zi) . (3.1)

On the other hand, also within the Markovian MC, instead of decreasing
the time limit T , we add the NLO correction proportional to ∆-function
directly to the evolution kernel. More precisely, it is done by means of
correcting MC events with the following MC weight

w =
∏
i

P (1)(zi)

P (0)(zi)
, (3.2)

where P (1)(zi) = P (0)(zi) + λ∆(zi) and λ = 2CFαs

π = 0.100384. Therefore,
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the weight can be expressed as follows:

w =

N∏
i=1

[
1 + λ ∆(zi)

(
1 + z2i

2(1− zi)

)−1]
, (3.3)

where N is a number of emissions before the time limit T is reached and
∆(zi) is that of Eq. (2.8).

3.1. Numerical results

Figure 2 shows various solutions D(T, x) of the evolution equation. The
(a)/blue curve represents the solution accurate up to LO. The (b)/red curve
shows the distribution for the generation with decreased time limit, while the
(c)/green one shows the one obtained by adding the ∆-correction directly
to the kernel using Eq. (3.2). The (d)/black curve representing the initial
distribution D(t0, x0) is also shown.

Fig. 2. Energy distributions D(T, x): (a) the one obtained by using the LO approx-
imation (blue), (b) the one obtained by decreasing the evolution time limit (red),
(c) the one obtained by correcting the LO kernel with the ∆-function (green) and
(d) the initial energy distribution D(x0) (black). They were generated using the
following parameters: T = 9.21034 and ε = 10−4. The distributions (a)–(c) coin-
cide.

It is clearly seen that (b)/red and (c)/green curves coincide, which con-
firms the statement of Curci–Furmanski–Petronzio: decreasing the time
limit has the same effect as correcting the kernel with the ∆-function.

The differences between various curves are better visible in figure 3,
which shows the same distributions multiplied by x and plotted as a function
of log10 x.
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Fig. 3. The same xD(x) distributions as in Fig. 2 plotted as functions of log10 x.
The parameters and the meaning of colours are also the same.

In order to see even better the differences between various resulting dis-
tribution, we plot in figures 4 and 5 the ratios of the same distributions,
once again as functions of x and log10 x. Now, the black/red curve repre-
sents the ratio of the solution obtained by decreasing time limit and the one
accurate up to the LO level. The light grey/green curve shows the ratio of
the solution obtained by using the direct ∆-correction to the kernel and the
one obtained by using the LO approximation. Finally, the grey/blue curve
represents the ratio of the distribution obtained by decreasing the time limit
and the one with the direct ∆-correction to the kernel. It is seen that the
last ratio is close to one. Once more, it indicates clearly our basic result
that shifting the evolution time limit by ln z (factorization scale by factor z)
gives the same result as using the direct ∆-correction to the kernel in the
way described by Curci–Furmanski–Petronzio [2].

We have checked that the slight systematic difference between black/red
and light grey/green curve in figures 4 and 5 for small x values results from
the fact that in the MC implementation shortening T → T + ln(1/zi) below
the initial t = 0 cannot be realized3. Also, one has to keep in mind, that
such a shortening evolution time limit induces not only O(αs) contribution
to the evolution kernel, but also O(α2

s ) term, which is not taken into account
in the present study. Due to smallness of αs the corresponding effect seems
to be negligible.

Let us finally mention that all plots and histograms presented in this
sections have been obtained using Monte Carlo software environment MCde-
velop [9] and ROOT [10] package.

3 In the numerical exercise with T → T − ln(1/zi) and ∆→ −∆, this discrepancy gets
reduced.
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Fig. 4. Ratios of D(x) distributions: (b) divided by (a) (black/red), (c) divided by
(a) (light grey/green) and (b) divided by (c) (grey/blue). The notation (a), (b)
and (c) and parameters are the same as in figure 2.
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Fig. 5. Ratios of xD(x) distributions as functions of log10 x. The parameters and
the meaning of colours are the same as in figure 4.

4. Summary

The most important result presented here is checking the equivalence of
two methods of implementing the ∆-function of CFP in the Monte Carlo en-
vironment. In the first method, the evolution time range was made shorter,
step by step, after each iteration. In the second method, the evolution time
limit was kept fixed, but the ∆-function was added directly to the LO evolu-
tion kernel as NLO correction, by means of correcting generated events with
the help of a relevant MC weight. Both methods have given the same results,
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within the statistical error of the MC computations. The small systematic
difference between the results of both methods is the region of small x values
is well understood.

This work is partly supported by the Polish National Science Center
grants DEC-2011/03/B/ST2/02632 and UMO-2012/04/M/ST2/00240.
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