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I review a recent analysis presented in F. Jegerlehner, Acta Phys. Pol. B
45, 1167 (2014); arXiv:1305.6652 [hep-phl, Acta Phys. Pol. B45, 1215
(2014). After the discovery of the Higgs particle the most relevant struc-
tures of the SM have been verified and for the first time we know all param-
eters of the SM within remarkable accuracy. Together with recent calcula-
tions of the SM renormalization group coefficients up to three loops, we can
safely extrapolate running couplings high up in energy. Assuming that the
SM is a low energy effective theory of a cutoff theory residing at the Planck
scale, we are able to calculate the effective bare parameters of the under-
lying cutoff system. It turns out that the effective bare mass term changes
sign not far below the Planck scale, which means that in the early universe
the SM was in the symmetric phase. The sign-flip, which is a result of a
conspiracy between the SM couplings and their screening/antiscreening be-
havior, triggers the Higgs mechanism. Above the Higgs phase transition the
bare mass term in the Higgs potential must have had a large positive value,
enhanced by the quadratic divergence of the bare Higgs mass. Likewise the
quartically enhanced positive vacuum energy density is present in the sym-
metric phase. The Higgs system thus provides the large dark energy density
in the early universe, which triggers slow-roll inflation, i.e. the SM Higgs is
the inflaton scalar field. Reheating is dominated by the decay of the heavy
Higgses into (in the symmetric phase) massless top/anti-top quark pairs.
The Higgs mechanism stops inflation and the subsequent electroweak phase
transition provides the masses to the SM particles in proportion to their
coupling strength. The previously most abundantly produced particles are
now the heaviest and decay into the lighter ones, by cascading down the
CKM-element matrix from top and bottom to normal matter. Baryon-
number B violating interactions are naturally provided by Weinberg’s set
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of close-by dimension 6 four-fermion effective interactions. Since matter
is produced originating from the primordial heavy Higgs fields via C and
CP violating decays we have actually a new scenario which possibly could
explain the baryon-asymmetry essentially in terms of SM physics.
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1. Introduction

With the discovery of the Higgs boson by ATLAS [1] and CMS [2]| at
the LHC all relevant ingredients of the Standard Model (SM) have been
established experimentally. In particular, for the first time we know all the
basic SM parameters with remarkable accuracy. The Higgs mass, found to
be My = 125.9 £ 0.4 GeV, turned out to have a value just in the window
which was required to allow one to extrapolate SM physics up to the Planck
scale [3] without the need to assume some new non-SM physics. This, to-
gether with the fact that so far no hints for a supersymmetric extension or
extra dimensions etc. have been found, sheds new light on the structure of
the SM and its self-consistency. The SM together with its specific values
for the couplings, the gauge couplings ¢’, g, gs, the top-quark Yukawa cou-
pling y; and newly, the Higgs self-coupling A\ are supporting the picture of
the SM as a low energy effective theory of some cutoff system residing at the
Planck scale. In such a framework, the relation between bare and renormal-
ized physical low energy parameters acquirers a physical meaning and from
the knowledge of the physical parameters we can calculate actually the bare
parameters relevant at the high (short distance) scale. The SM as a low
energy theory, is then emerging as a result of the low energy expansion in
E/Apy. All positive powers (E/Ap))", n =1,2,3,... are heavily suppressed
by the very high cutoff Ap; ~ 10'® GeV and unobservable at present accel-
erator energies. Renormalizability of the SM as well as all known conditions
which where required to get the SM as a minimal renormalizable extension
of its low energy effective structure now are a consequence of the low energy
expansion. As we do not see the infinite tower of non-renormalizable effective
operators, the low energy effective theory actually has more symmetry than
the underlying cutoff system at the Planck scale, which is largely unknown
in its details. In such a scenario, simplicity and symmetries are expected
to be naturally generated dynamically as a consequence of our blindness for
the details of the underlying cutoff system.

Our scenario, not new at all, has to be seen in the context of the general
question about what is the path to physics at the Planck scale. The String
Paradigm assumes that “the closer we look, the more symmetric the world
looks like” assuming a hierarchy of symmetries like
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M-Theory ~ Strings <+ SUGRA <+ SUSY + SM,

In contrast, the Emergence Paradigm understands nature as “the less close
you look the simpler it looks”

Planck medium ~ “Ether” — low energy effective QFT — SM..

The latter view understands the SM as the “true world” seen from far away.
The methodological approach we know from investigating the long range
properties of condensed matter systems, specifically, critical phenomena,
which may be applied to particle physics as well. In this context, even
the quantum field theories are structures emergent from critical and quasi
critical underlying condensed matter systems.

At the high scale, given by the intrinsic cutoff, one expects all kinds
of excitations. Most of them cannot be seen at long distances (non-critical
modes), however, conspiracies between modes are able to develop quasi crit-
ical modes which are seen as light particles in interaction, which take the
form of a non-trivial renormalizable QFT in space-time of dimension D = 4.
For D > 4 only trivial stable theories would exist, such that extra dimen-
sions decouple. About the details of the “ether” we do not know much,
except that we have to stay within the universality class (= the totality
of possible systems exhibiting identical long range tail) of the SM. Such a
view turns upside-down the standard believes that the higher the energy the
simpler the world, together with the assumption that symmetries in nature
are broken at best spontaneously. Such scenarios assume renormalizability
as a basic principle and symmetries to be broken by the relevant operators
of dimension d < 4 and ignore the fact that there is an infinite tower of
possible higher order operators with d > 4, which generally would violate
symmetries seen at low energy.

Symmetries relevant for the SM are small gauge groups, with particles
in multiplets of few conspiring fields, like doublets and triplets, i.e. the SM
gauge structure is natural in a low energy expansion. In contrast, GUT
symmetries are not naturally emergent and have to be put by hand at the
high scale.

In this scenario, the relation between bare and renormalized parameters
is physical and bare parameters predictable from known renormalized ones.
All so-called “UV singularities” must be taken serious including terms en-
hanced quadratically and quartically in the cutoff. Since the cutoff is finite,
there are no divergences and a cutoff limit is not required to exist. The
impact of the very high Planck cutoff is that the local renormalizable QFT
structure of the SM is presumably valid up to not far below the Planck scale.
This also justifies the application of the SM RG up to high scales.
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2. Low energy effective QFT of a cutoff system

I think it is instructive to be more specific about the appearance of
low energy effective theories. The best would be to implement the SM
as a lattice field theory in the unitary gauge, in which the Higgs vacuum
expectation value (VEV) v is a well defined order parameter of the broken
H < —H (Z5) symmetry, with a small lattice spacing a = A~!, and take
the lattice system as the true underlying theory and work out its long range
properties. In order to illustrate the emergence of a low energy effective
theory, for simplicity, let us consider the cutoff version of a self-interacting
Higgs system with Lagrangian (for details, see |4])

£ = Lo+ Lo = 9°0(2) (1+0/42) ,0(2) — 2 md 6(2)*— 22 6(@). (1)

The regularization is chosen here as a Pais—Uhlenbeck higher-derivative ki-
netic cutoff term.

We consider a vertex function (connected amputated one-particle irre-
ducible diagrams) of N scalar fields. The bare vertex functions are related
to the renormalized ones by reparametrizing parameters and fields

TN (pym, \) = ZN2(A/m, A) T (93 Amo (A, m, M), Ao(A/m, ). (2)

The renormalized functions satisfy a RG equation which controls the re-
sponse to a change of the cutoff A: Aa% I'(N) s ’m ,» for fixed renormalized

parameters, and which by applying the chain rule of differentiation yields

0 0 0
< oA +ﬁo — N9 + 8o Amj aAm(Q)) F/(ﬁ[)(p; mo, Ao)

8
=72 N2 A T (pim, A) 3
T im, ) 3)
m2, is the “critical value” of the bare mass for which the renormalized mass
is zero, i.e. F/ﬁ) ‘p:[) =0, and Am% = mg—mgc corresponds to the renormal-
ized mass parameter. Since the renormalized vertex functions have a regular

limit as A — oo, to all orders in perturbation theory the inhomogeneous part
behaves as

9 (N _
22 A Y (pim, ) = O (47 A)') (4)
i.e., the inhomogeneous part, representing a cutoff insertion, falls off faster
than the Lh.s. of Eq. (3) by two powers in the cutoff for large cutoffs. This
is easy to understand given the fact that the cutoff enters £ as a term
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proportional to A72. All the RG equation coefficients exist as non-trivial
functions in the limit of infinite cutoff

lim ag(A/m,N) =a(),  a=p7.4, (5)

for dimensions 2 < D < 4. In D = 4 dimensions, the proper vertex-functions
have a large cutoff A-expansion

T (p; Amo, ho) = S A7 (I A) £V (p Amog, Ao) (6)
k>0

and for large A, we obtain the preasymptote of I’ /(1]];[)

) (p; Amo, Ao) = S (I A)! £ (p Amog, 2 A7) (7)
>0

which is collecting all leading terms and satisfies the bound

]rgﬁ (p; Amo, Ao) — T (p; Am, )\0)’ ~0 (A—2 (m Alw)) .8

as

The index [, is bounded to all orders in the perturbation expansion. The key
point is that the still cutoff dependent preasymptote satisfies a homogeneous
RG equation, a special property of the long range tail of the bare theory

0 0
(A + o) o, M) 5 = N 74/ B, o)

O\
0 N
a4 Ao, Ao) A Amg) r{V (Ao d) =0, (9)

The homogeneity of this partial differential equation for the response to a
change in A means that A does not represent a cutoff any more and just takes
the role of a renormalization scale parameter. The interpretation (verifiable
to all orders in the perturbation expansion) is the following:

— the preasymptotic theory is a non-trivial local relativistic QFT;

— the crucial point is that the cutoff A is physical i.e. a finite number and
by a finite renormalization (renormalizing parameters and fields only)
by change of scale p; — kp;; k = A/u, one can achieve that momenta
measured in units of A are rescaled to momenta expressed in units of
MS scale y;

— as a consequence, the relationship between renormalized and bare pa-
rameters is physical, such that knowing the renormalized parameters
we are able to calculate the bare ones;
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— an important empirical fact: besides QCD at low energy, elementary
particle interactions have rather weak coupling such that perturbation
theory works in general;

— applied to our “real world” physics with A = Ap; the cutoff is extremely
high such that all cutoff structure are deeply hidden at present accel-
erator energies.

A comparison with QCD reveals the importance of a large cutoff. Low
energy effective hadron theories suffer from the close-by cutoff and are there-
fore difficult to establish unambiguously. In Table I, we give another repre-
sentation of the low energy expansion at work.

TABLE 1
Typical operators in a low energy expansion.
Dimension Operator Scaling behavior
oco—many
irrelevant
0 . operators
no
data d=6 (@9)2, (Po)° - -- (E/Ap1)?
| d=5 ¢O—HVF;W¢7 T (E/API)
| d=4  (99)%¢% (Fu) - n(B/Am)
experimental -
data d=3 ¢, P (Ap1/E)
+ d=2 ¢%, (An)* (Api/E)?
d=1 ¢ (Ap1/E)?

The relevant operators must be tamed by symmetries, in order not to
blow up with the cutoff: chiral symmetry and gauge symmetry in the SM,
and supersymmetry in supersymmetric extensions of the SM.

Up to date and for a long time to come, there is and will be no direct
experimental information on O(E/Apy) or O(E?/A%)) effects, but bounds
on the absence of such terms, unless they violate basic SM symmetries like
baryon-number conservation, for example.

The infinite tower of irrelevant operators of dimension > 4 are not
seen at low energy and imply the simplicity of the SM! Blindness to de-
tails implies more symmetries (Yang-Mills structure [gauge cancellations|
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with small groups': doublets, triplets besides singlets, Lorentz invariance,
anomaly cancellation and family structure, triviality for space-time dimen-
sions D > 4 [D = 4 border case for an interacting world at long distances,
this has nothing to do with compactification, extra dimensions just trivialize
by themselves|, etc.). The natural emergence of spin 1 and spin 2 excitations
has been considered in Ref. [5].

Problems are posing the relevant operators of dimension < 4. In
particular, the mass terms require “tuning to criticality”. In the symmetric
phase of the SM we are confronted with one mass term only (the others are
forbidden by the known chiral and gauge symmetries), the one of the Higgs
doublet field.

The symmetric phase Higgs fine tuning has the form

2 A2

2
-2 e
3272 7

mé =m? + om?; om (10)
with a coefficient typically C = O(1). To keep the renormalized mass at
some small value, which can be seen at low energy, m2 has to be adjusted
to compensate the huge number dm? such that about 35 digits must be
adjusted in order to get the observed value around the electroweak scale.
This is the usual hierarchy problem.

3. Matching and running couplings

The key questions asked here are: (1) how does SM physics look like
at much higher energies and (2) what does the Higgs potential look like
at the bare level, when going to the Planck scale. The first question can
be answered, under the assumption that no substantial effects come in by
possible physics beyond the SM, by studying the evolution of couplings as
determined by the SM renormalization group (RG), which now is known to
three loops in the MS renormalization scheme |[6—11]. The initial MS values
have to be obtained by appropriate matching conditions from the physical
on-shell parameters. For the latter, we use the values [12]:

Mz=91.1876(21) GeV, My = 80.385(15) GeV, M, = 173.5(1.0) GeV,
G,=1.16637(1)x 1075 GeV 2, G, =G, (Mz)=1.15564(55) x 107° GeV 2,
a '=137.035999, o ' (MZ)=127.944, o (MZ)=0.1184(7).  (11)

For the Higgs mass, we adopt

My =125.9+0.4 GeV, (12)

1 Such a pattern (few particle multiplets) reminds of primordial nucleosynthesis, which
exclusively produces only the simplest, i.e. lightest, elements.
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in accord with the latest ATLAS and CMS reports. All light-fermion masses
M (f #t) give negligible effects and do not play any role in our considera-
tion. The top quark mass given above is taken to be the pole mass. It should
be reminded that it is not precisely clear whether the value reported by ex-
periments or by the PDG can be identified with the on-shell mass within the
given accuracy. For a recent review on the subtleties in defining/measuring
the top quark mass, see e.g. [13] and references therein.

One somewhat controversial issue about the electroweak matching con-
ditions concern the inclusion of tadpole contributions in the relationship
between on-shell and MS quantities. The tadpoles which only show up in
the broken phase, where they result from the radiative corrections of the
Higgs VEV v, on the one hand, can yield large corrections, on the other
hand, there is a theorem which says that tadpole contributions drop out
from relations between measured quantities. For this reason, tadpoles are
often dropped in actual calculations. It should be realized that experimen-
tally measured quantities incorporate tadpole contributions in any case (one
cannot exclude subsets of diagrams form a measurement). The relation be-
tween MS and on-shell quantities, however is not a relation between physical
quantities and tadpoles are relevant to be included. Since tadpoles are nei-
ther gauge-invariant nor UV finite, dropping them leads to gauge dependent
quasi-MS parameters which in addition do not satisfy the correct RG equa-
tions (see [14-17]). Care has to be taken also of the fact that the weak
corrections are not respecting the Appelquist—Carazzone theorem [18] when
evaluating the matching conditions. This means, for example, that elec-
troweak top quark contributions do not start above the top quark threshold.
Top quarks e.g. give a large contribution to the p-parameter

3v2G
p(0) = Gne(0)/G(0) = 1+ 167T2“
M2 M2
x M2+<WlnM2/M2 -2 InM%/M} +>} ,
{ C\L- My /Mg T M My

where Gne(0) and G, (0) are the neutral and charged current effective Fermi
couplings at zero momentum, respectively.

The top Yukawa coupling and the Higgs self-coupling are only known via
their measured masses via the mass coupling relations

miy (1°) = 9% (1°) v* (0*) . my (1) = (¢ (17) + 97 (1)) v* (1)
mi (%) = quf (W) v* (%), mip () = 52 (1) 0 (1?) (13)

which derive from the Higgs mechanism.
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We will have to distinguish bare and renormalized quantities and among
the latter MS and physical on-shell ones. As usual, we adopt dimensional
renormalization starting form D = 4 — ¢ dimensions and taking the limit
¢ — 40 after renormalization. By m;g, we denoted the bare, by m; the
MS and by M; the on-shell masses. Reg = % — v+ Indr + Inpd is the
UV regulator term with g the bare scale parameters used in dimensional
renormalization. The substitution Reg — In u? defines the UV finite MS
parametrization. Let 6Mb2 denote the bare on-shell mass counterterm for
a boson species b and dM; the corresponding counterterm for a fermion
species f. By identifying m?(u?) = M2 + 6M§|Reg:1nu2 and mg(p?) =
My + (5Mf|Reg:1nM2, respectively, we then obtain the MS masses in terms
of the on-shell masses. Similar relations apply for the coupling constants
g, ¢, X and y¢, which, however, usually are fixed using the mass-coupling
relations in terms of the masses and the Higgs VEV, which is determined
by the Fermi constant as v = (\/§Gu)_1/2- Here, G, is the muon decay
constant, which represents the Fermi constant in the on-shell scheme. The
MS version of the Fermi constant we denote by Gll}/ls or simply by Gr. The
matching condition for the Higgs VEV may be represented in terms of the
one for the muon decay constant

G%/TS (NQ) =G+ (5Gu‘os) (14)

Reg=Inp2? >

where @‘OS = 29" for details I refer to Ref. [14, 17]. Then the MS top

=1
Gy v

quark Yukawa coupling is given by

— 2 -
5 () = va T O) v

ssan U =(V26E)

(»*), (15)

and the other MS mass-coupling relations correspondingly. The RG equation
for v?(u?) follows from the RG equations for masses and coupling of the
Higgs potential V (¢) = 3 m? ¢* + 3 A ¢* as

m2 2
v? (,u2) =3 )TI(,L(LIL;)) , ,quZQvZ (u2) =2 (u2) |:’)/m2 — 5)\)‘] . (16)

We remind that all dimensionless couplings satisfy the same RG equations
in the broken and in the unbroken phase. Figure 1 shows the solutions of
the RG equations and the S-functions up to u = Mp;.

Remarkably, as previously found for the running couplings in Refs.
[19-23], all parameters stay in bounded ranges up to the Planck scale if
one adopts our matching conditions together with the so far calculated RG
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Fig. 1. Left: the dimensionless SM couplings in the MS scheme as a function of the
renormalization scale (see also [19-23]). The input parameter uncertainties as given
in RPP [12] are represented by the thickness of the lines. The gray/green band
corresponds to Higgs masses in the range [124-127] GeV. Right: the S-functions
for the couplings g3, g2, 91, y+ and A. The uncertainties are represented by the line
widths.

coefficients. We note that including all known terms no transition to a
metastable state in the effective Higgs potential is observed with our set of
MS input parameters, 4.e. no change of sign in A occurs, in agreement with
Refs. [19, 21]. Results at various scales are collected in Table II.

TABLE 11

Parameters in MS scheme at various scales for My = 126 GeV and g =~
1.4 x 10'6 GeV. €y and Oy are the one- and two-loop coefficients of the quadratic
divergence, respectively. C; given by Eq. (17). The last two columns show corre-
sponding results from Ref. [23].

Coupling\scale My M, 140 Mpy M, 23]  Mp [23]
gs3 1.2200 1.1644 0.5271 0.4886 | 1.1644 0.4873
g2 0.6530  0.6496 0.5249  0.5068 | 0.6483 0.5057
91 0.3497  0.3509  0.4333  0.4589 | 0.3587 0.4777
m 0.9347 0.9002 0.3872  0.3510 | 0.9399 0.3823
Up 0.0238  0.0227 0.0082 0.0074
Yr 0.0104 0.0104 0.0097 0.0094
VA 0.8983  0.8586 0.3732 0.3749 | 0.8733 7 0.1131
A 0.8070 0.7373 0.1393 0.1405 | 0.7626 —0.0128
C1 —6.768 —6.110 0 0.2741
Cs —-6.672 —-6.217 0 0.2845

m [GeV] 89.096 89.889  97.278  96.498 | 97.278
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4. The quadratic divergences in the SM

In the unbroken phase, the only quadratic divergences show up in the
renormalization of Higgs potential mass m. Since the UV structure is the
same in the broken phase, there are no other problems in this direction.
Here, we encounter the fine tuning relation (10). At one-loop, the coefficient
function C; has been discussed within this context by Veltman [24], and
modulo small lighter fermion contributions is given by

Cy = % (ME + MZ + 2My, — 4M7) :2)\+gg/2+ggz—12yf. (17)
On the one hand, parameters are known in the broken low energy phase,
where they are directly accessible to experiment, on the other hand, they are
given in terms of SM parameters in the unbroken phase, which is physical
at high energies. A priori, the renormalized m? in the symmetric phase
is not known and not accessible directly to experiment. As we will see
below, if m? would not be small relative to the very large ém?, it would
affect the inflation pattern and thus, in principle, is constrained by the
observed Cosmic Microwave Background (CMB) fluctuation data. In fact,
the matching condition mg = m? at scale pio where §m? = 0 actually fixes the
renormalized mass at any scale in terms of the measured Higgs mass and the
RG evolution of it. So the hierarchy problem seems to be a problem in the
symmetric phase. In order to understand this, we have to be aware that the
Higgs is not a fundamental mode in the underlying cutoff system. Therefore,
in the underlying cutoff system m% is not a fundamental parameter, but an
effective one associated with the scalar Higgs mode, which usually is some
collective effect within the Planck medium. This means that the effective
bare mass is actually essentially generated by the dynamics and hence largely
determined by dm?, i.e. the bare mass is radiatively generated. In any case,
we assume m? to be small relative to ém?.

What is important is that C is universal and depends on dimension-
less gauge, Yukawa and Higgs self-coupling only, the RGs of which are un-
ambiguous. Similarly, for the two-loop coefficient Cy, first calculated in
Refs. |25, 26],

In (26/3%) 7 2 9
Cy = C1+ ——L"2 |18y} 2~ g +24°-32¢°
2 1+ 162 ym&%( 69 t39 s

87 ,4 63 15 2 2 2

g - =g - — g+ (*6yf+g’ +392> -2 A% (18)
8 8 4 3
which numerically does not change significantly the one-loop result. Re-
cently, Hamada, Kawai and Oda [22| have investigated the coefficients to
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two loops in terms of running couplings and found the coefficients of the
quadratic divergence to have a zero not far above the Planck scale. For
the parameters listed in Table II, the SM makes a prediction for the coef-
ficients C; and hence for the bare mass parameter in the Higgs potential,
which we displayed in Fig. 2. In the broken phase given by m3 = %m%m,
m3 is calculable and is exhibiting the following properties: (i) the coefficient
Cn(p) exhibits a zero, for My = 126 GeV at about g ~ 1.4 x 1016, not far
below p = Mpy, (ii) at the zero of the coefficient function the counterterm
dm? = m? — m? = 0 vanishes and the bare mass changes sign, (%) this
represents a first order phase transition which triggers the Higgs mechanism
and seems to play an important role for cosmic inflation, (iv) at the transi-
tion point pg, we have vg = v(p3), where v(1?) is the MS renormalized Higgs
VEV, (v) the jump in the vacuum density thus agrees with the renormalized

one: —Apyae = Alig) v}(pd) , and thus is O(v?) and not O(M3)) .

24

()
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Fig.2. The Higgs phase transition in the SM. Left: the zero in C; and Cj for
My = 1259 + 0.4 GeV. Right: shown is X = sign(mg) x log;y(|m3]), which
represents m2 = sign(m2) x 10%.

We note that 3y has a zero at about py ~ 3.5 x 1017 > 19, where the

Higgs self-coupling A although rather small is still positive and then starts
slowly increasing up to Mpjanek [17]-

In any case, the zero of the coefficient function C(u) triggers a phase
transition, which corresponds to a restoration of the symmetry. Indeed,
there is a close relation between the Higgs mechanism and the electroweak
(EW) phase transition [27]. To this end, we have to consider the relevant
finite temperature effects [28-30], which are dominating especially in the
very early thermal evolution of the universe at the hot Big Bang. Including
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the leading effect only, the finite temperature effective potential reads

V(6.T) = 5 (90T~ 1) &+ o o' 4. (19)
The usual assumption is that the Higgs is in the broken phase u? > 0
from the beginning at the Big Bang. The EW phase transition is then tak-
ing place when the universe is cooling down below the critical temperature
T. = \/p?/gr, meaning grT? — pu?> < 0 when T < T,. My analysis, in
contrast, shows that above the phase transition point pg the SM is in the
symmetric phase with —u? — m2 = (m?, +dm?)/2 > 0, and the EW phase
transition is essentially triggered by the Higgs mechanism, at least it can hap-
pen only after the Higgs mechanism has taken place, thus ppw < pnm = po-
The relevant question here is which of the terms dm? or gr T? is leading in
the relevant epoch of early universe? I find m?(u = Mpy) ~ 0.87 x 1073 M3,
such that T(u = po) ~ 1.62 x 10 °K and T(u = Mp)) ~ 4.18 x
1030 °K . We note that Tp; ~ 1.42 x 1032 °K (temperature of the Big Bang).

The coefficient gr is given by gr = ﬁ (Qm%,[, —l—m2Z +2m? + %m%{) =

1—16 [3 g° +g’2 +4y? + % /\} ~ 0.0983 ~ 0.1 using the results of Table II

at scale Mp;. The dramatic jump in mg at po in any case drags the Higgs
into the broken phase not far below pg as illustrated in Fig. 3.

~ 804 —1 ~ 801 )

“E 0] R N A R

= 40 T = 40 T

> 0_ """""""""""""""""""" < O: """""""""""""""""""

<o -20] <o -20] ‘
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(S I (s I I

< g4 T oG 1o ¥ I — e |
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Fig.3. The role of the Higgs in the finite temperature SM. Left: for pg ~ 1.4 x
1016 GeV (My ~ 126 GeV, M; ~ 173.5 GeV). Right: finite temperature delayed
transition for pg ~ 6 x 1017 GeV (Mg ~ 124 GeV, M; ~ 175 GeV), the m2 term
alone is flipping at about ug ~ 3.5 x 108 GeV.
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5. The Higgs hierarchy and its impact on inflation

Cosmological inflation [31-37] requires an exponential growth of the
Friedman-Robertson-Walker radius of the universe a(t), i.e. a(t) oc el
with H(t) = a/a(t) the Hubble constant at cosmic time t. X denotes the
time derivative of X. Inflation is able to solve the flatness problem (why is
the actual energy density of the universe so close to the critical density, the
unique value which a flat universe must have as a limiting case between the
closed and the open universes) and the horizon problem (without inflation
what we seen when we look at the CMB radiation, we would see a huge
patch which at the time of last scattering was outside the causal horizon,
while the pattern is observed to be uniform over all sky). The inflation term
comes in via the SM energy-momentum tensor and adds to the r.h.s. of the
Friedmann equation

2 (Vo) + 5%, (20)

where ¢ = 871G /3, Mp; = (G)~/? is the Planck mass, G Newton’s gravita-
tional constant.

In the SM, the Higgs contribution to the energy-momentum tensor in
terms of energy density and pressure amounts to

=L PV py=1-V(9), (21

The second Friedman equation d/a = —% (p+ 3p) tells us that the con-
dition for growth @ > 0 requires p < —p/3 and hence %ng < V(¢). CMB
observations strongly favor the slow-roll inflation %qsz < V(¢) condition.
Indeed, the Planck mission measured w = p/p = —1.13f8:}3. The first
Friedman equation reads a?/a? + k/a? = ¢* p and may be written as H? =

2 [V(¢) +1 gz}?} — 2 p, while the field equation reads ¢+3Hd = —V'(¢) =

—dV(¢)/d¢ . Note that the kinetic term #? is controlled by H = f%ﬂ #? =
??p(q — 1), i.e. by the observationally controlled deceleration parameter
q(t) = —da/a®.

Inflation requires the presence of a dominating dark energy contribution,
characterized by the equation of state p/p = —1. This is precisely what the
SM in the symmetric phase suggests. Provided the Higgs potential remains
stable (A positive) a huge positive bare mass square at least naively supports
the Gaussian slow-roll inflation condition. Since both A and m? for the first
time are numerically fairly well known, quantitative conclusions concerning
the phenomenologically established features of inflation should be possible
solely on the basis of SM properties. In a phase where the mass term is
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dominating, the behavior is characterized by a free massive scalar field with
potential V = mTQ ¢? such that H? = (a/a)? = mT,Q ¢? and ¢+ 3H(¢p) = m2¢
which is a harmonic oscillator with friction. It tells us that the Higgs field
is decaying more or less rapidly, or looking back in time, the Higgs field
must grow exponentially implying that ¢ must have been very large in the
early universe. This does not conflict with the expectation that the SM
Higgs field at low energies is of moderate size, as it is renormalized by wave
function renormalization factors which depend logarithmically only on the
renormalization scale and thus on the cutoff. A huge Higgs field at early
times is, in fact, crucial for SM inflation to work, otherwise we would not
get a sufficient amount inflation. What also helps is the quartically enhanced
cosmological constant (CC) provided by the SM Higgs. In Ref. [38] we have
shown that the corresponding vacuum energy density is actually calculable
by perturbative means, with the result

m? A m? A M?
V(0) = — (0[¢?[0) + = (0]¢*0) = —— =+ = =2, ==_—_FL (22
(0) = " (01?10} + 2 (0lg")0) = 2 = 4+ 2 = Yo (29)
2
With m? ~ dm? = 5\2/[7‘} C(p), the vacuum energy density reads
M,
= X 23
PAO pA+ (1677'2)2 (M) ( )

with X () = 2 (2C () + A(w)). Thus X () = 0 close to the zero of C(u),
which takes relatively large negative values at lower energies (see Fig. 2)°.
Thus, surprisingly, the cosmological constant and the Higgs mass term have
strongly correlated matching points, where the renormalized low energy
quantity coincides with the bare parameter and quadratic as well as quar-
tic cutoff effects are nullified not far from each other near the EW phase
transition point (see Ref. [38] for details). Below the corresponding zeros
the renormalized parameter relations and parameter running applies and as
low energy parameters there is no reason why the renormalized quantities
cannot be small. As a result, the SM predicts a huge time-dependent CC, at
Mp) equivalent to pg =~ V(¢) ~ 2.77 M, ~ 6.13 x 107 GeV?, for the initial
field value ¢; ~ 4.51 Mp; at Planck time t; = tp;, while the value observed
today is pyac = /f/ll with pa ~ 0.002 eV! The short distance versus long
distance “matching-patch” separates the regime where we look at the bare
system form the “illusory world” we see at low energies where one has lost
the memory of the cutoff.

2 The non-vanishing (0|$?|0) also implies a shift of the effective mass of the Higgs by

2 —
m =m’+3=.
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The SM inflation pattern is impressively supported by observation, most
recently by the Planck 2013 results [39]. The cosmological constant is char-
acterized by the equation of state w = p/p = —1, and in our scenario is a
prediction of the SM for times before the phase transition when p > pg. Dur-
ing the very early inflation era, when ¢? < V/(¢), the Higgs field is decaying
exponentially and a large Higgs field at the Planck scale in not unnatural. In
fact, we need a huge field strength® ¢; ~ 4.51 Mp; at Planck time t; = tpy, in
order to get an amount of inflation N, = In(a(te)/a(t;)) = Ze H(t)dt > 60,
which is required as a minimum in order to solve the CMB horizon prob-
lem. For the initial field value mentioned, we obtain N, ~ 65 and infla-
tion ends at about te ~ 450tp; with ¢o ~ 2 x 1072 Mp;. Inflation in
any case would be stopped by the phase transition when p = pg, how-
ever, due to the exponential decay of the field inflation stops much ear-
lier and field oscillations set in before the phase transition is reached. In
our scenario, in the symmetric phase, the effective number of relativis-
tic degrees of freedom is g.(T) = gg(T) + £ g¢(T) = 102.75 such that
the Hubble constant, during the very early radiation dominated era, reads
H ={/p=~1.66 (ksT)*/102.75 Mp,', or at Planck time H; ~ 16.83 Mp ~
2.05 x 1020 GeV ~ 3.12 x 10** sec™! as an initial value, which however de-
creases with 1/7%, such that the pure inflation dark energy Hubble constant
given by Hy ~ (+/V(¢) ~ 4.81 Mp| ~ 5.88 x 1020 GeV ~ 8.93 x 10*® sec™!
becomes dominant and inflation sets in. While ¢ is large, the interaction
term of the Higgs Lagrangian will be dominating at first. As ¢ is decreasing,
the mass term will be dominating for some time before inflation stops.

6. Remarks concerning reheating and baryogenesis

The four Higgses near the Planck scale have an effective mass about
muo ~ 3.6 x 1017 GeV and thus can be produced in processes like WV —
HH or tt — H at times at and after the Big Bang. The big difference to
standard Big Bang scenarios is that the Higgses are primordial, ¢.e. they
exist as modes in the Planck medium in advance of being produced by high
energy radiation processes. A Higgs in this phase has a width dominated
by H — tt decay, since direct couplings HWW and HZZ are absent in the
symmetric phase. One estimates

Iy~ % Cy2(Mp1) ~ 7.5 x 10 3 mpgo ~ 2.7 x 1015 GV (24)

T
yields a life time 75 = 1/I'y ~ 2.5 x 10740 sec. This is relatively large
in terms of Planck times tp; ~ 5.4 x 107%* sec. It supports the possibil-
ity that the coupling does not change immediately when dramatic cooling

3 Indices ‘i’ and ‘e’ label initial-values and end-values, respectively, of the inflation era.
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due to inflation takes place. The SM predicts that the Higgses produce
top/anti-top quark radiation most abundantly. This means that reheat-
ing is mainly provided by H — tt decays. In addition, we estimate that
I'y < H(t) = a(t)/a(t) during inflation, before the phase transition takes
place. The energy density of top/anti-top quarks produced by the Higgs
decays satisfies the conservation equation (see e.g. Ref. [40])

pr+3H (pr+pi) =L py . (25)

Since the top quarks are relativistic p, = p;/3, and provided the energy
density is still dominated by the inflaton, we can estimate the maximum top
radiation density. As a result, one obtains

prmax < (3/8)%°; 'y py(ti) = 0.139 (I'y /H (1)) pol(t:)
33y (Mpy)

~ 0139 —————————=
64 /7

M3 mpo ~ 1.6 x 10" GeV*,  (26)

with ¢; the Planck time.

Concerning the possibility of baryogenesis, baryon-number violating in-
teractions in the low energy effective SM (LEESM) scenario naturally are
the close-by dimension 6 effective four-fermion interactions discussed first
by Weinberg [41]. Usually, it is assumed that some unknown very heavy
particle X is responsible for baryogenesis. The first stage is characterized
by kT > mx when we have thermal equilibrium and X production and X
decay are in balance. The second stage follows if H ~ I'y and kT < mx
implying that X production is suppressed and the system moves out of
equilibrium. Our X is the Higgs, with its known properties. Besides the
predominant “would-be charged” Higgs decays Ht — tb and H~ — bt, with
rates proportional to y:yp, decays proportional to the CP-violating CKM
matrix-elements V;4 and Vi, Ht — td,ub and H~ — bu,dt are impor-
tant as a condition for baryogenesis. At inflation times, we have HT — td
with rate o< y;yq Via ~ 5.5 x 1078(1 — p —in) and H~ — bu with rate
o YpYu Vp ~ 1.2 x 1072 (p — in), where p = 0.131, n = 0.345. The rates
compare to the dominant t-mode* with relative rate y? ~ 0.123. As men-
tioned before, matter production is preferably into fermion pairs with the
biggest Yukawa couplings. After the EW phase transition the now heavy
states decay into the lighter ones, with the smaller Yukawa couplings. Thus
the major part of normal matter is produced via the heavy states which
are cascading down the CKM coupling scheme. Apparently in such a sce-
nario, the system would likely intermittently be far from equilibrium while

4 The next-to-leading b-quark rates are reduced by the branching fraction 4.4 x 107*
and the 7-lepton rates are lower by 2.2 x 107%.
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approaching the EW phase transition, and the dynamics behind could be
important for the explanation of the baryon-asymmetry. So, likely in this
scenario the origin of the baryon-asymmetry may have a different explana-
tion than thought so far.

7. Conclusion

The main conclusions have been given in the abstract already. Here,
we would like to point out the importance of an extended analysis of the
possible consequences of the SM physics. One of our main assumptions has
been the one that physics beyond the SM is not needed to understand the
early universe. The point is that in the LEESM scenario unseen physics
can naturally be expected, however, it must be natural in the sense of a
low energy expansion. Grand unified theories as well as a supersymmetrized
SM are not natural, because they require an improbably high amount of
conspiracy of very many modes, while the emergence of an extra U(1) or a
SU(4) look much more natural. What is also ruled out are additional fermion
families. They definitely would spoil the present interplay of couplings which
make the extrapolation up to the Planck scale working.

We once more point out that there is no hierarchy problem in the broken
phase of the SM. All particle masses, the ones protected by symmetries
as well as the unprotected Higgs, are proportional to the Higgs vacuum
expectation value times a coupling which is subject to logarithmic scale
dependence only. The Higgs VEV is an order parameter determined by
collective long range properties of the system. If v would be of the order
of Mpi, the notion of spontaneous symmetry breaking would be obsolete,
since the symmetry would not be recovered at the high scale. We should
remember that the UV structure is the same in the symmetric and in the
broken phase, there cannot be any additional UV cutoff sensitivity generated
by the Higgs VEV. That v is much smaller than the cutoff, in principle can
be checked by putting the SM on a lattice of lattice spacing a and then
calculate va, which should turn out to be extremely small O(10716), which
is possible if the temperature turns out to be very close just below the
critical temperature. This again is expected to be the result of the specific
conspiracy of the various couplings of the SM.

In any case, a super symmetric or any other extension of the SM cannot
be motivated by the (non-existing) hierarchy problem. The Higgs in a su-
persymmetric extension of the SM cannot be the inflaton and provide the
necessary dark energy feeding inflation.

How do we get cold dark matter? If the right-handed sterile singlet neu-
trinos are Majorana particles exhibiting naturally a large Majorana mass
term not protected by any symmetry and not participating in the Higgs
spontaneous symmetry breaking could play a role here. Such sterile Majo-
rana neutrinos would naturally have masses of the order of the Planck scale
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and, therefore, not affect the running parameters of the SM, as they do not
couple directly to any of the SM fields and as they satisfy the decoupling the-
orem. At the same time, they would provide the seasaw mechanism which
would explain the smallness of the neutrino masses. But also an extra hid-
den SU(4) could play a role here, by forming stable bosonic quartet bound
states. Cold dark matter could be dominated by bound energy, similarly to
the case of normal baryonic matter with respect to QCD. Since SU(4) bound
states are bosonic, formation of structures and distribution of corresponding
dark matter would be very different form that of normal fermionic matter.

We also note that new physics like the existence of axions which could
play a key role in the issues of the strong CP problem, have a natural place
in a renormalizable low energy effective world.

As we have seen, a big issue is the very delicate conspiracy between SM
couplings. Therefore, precision determinations of parameters are more im-
portant than ever and a real challenge for experiments at the LHC and at
a future ILC, which may improve substantially A, y; and «g. But also low
energy hadron facilities have to play an important role as needed for a better
control of the non-perturbative hadronic effects in a(Myz) and as(Mz). It
is important to note that, provided there is essentially no other stuff, com-
ing closer to the properties of the Planck ether is only possible by pushing
high precision physics. Thus, higher order calculations and high precision
determinations of parameters are of paramount importance. Note that the
precise value of the top Yukawa contribution plays a particular role for the
precise location of the zero of the coefficient of the quadratic divergence, as
it is enhanced by a factor 6 relative to the Higgs self-coupling. Whether
the Higgs is the inflaton with the right properties depends crucially on the
precise point in the (A, y;)-plane. The window for this is very narrow.

Our analysis shows that the role of the Higgs is not just to provide masses
to SM particles, it also plays a key role in cosmology: for some time at and
after the Big Bang the Higgs is the only particle which directly talks to
gravity and directly takes part in the evolution of the universe. It is the
only SM particle which directly talks to the vacuum in the early universe.
Later, in the low energy phase, contributions from the EW phase transition
through the Higgs VEV and from the QCD phase transition through quark
and gluon condensates come into play. This has to be investigated yet.
Nevertheless, the Higgs very likely is the object able to provide negative
pressure and likely is responsible for blowing continuously energy into the
expanding universe according to the established dark energy which is still
existing today. While the Higgs likely was playing a dominating role in
shaping the early universe, in our present world the Higgs hides itself so
much that it took decades to actually find it, after theorists had proposed
it as being the source of the masses of the SM particles.
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