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Meson–meson interaction amplitudes especially ππ scattering ampli-
tudes are often used incorrectly. It also applies to parameters of the σ me-
son. This causes two significant problems: threshold behavior and position
of the σ pole which is suspicious. We modified multichannel S- and P-wave
amplitudes for the ππ scattering, using dispersion relations with imposed
crossing symmetry condition. The amplitudes are modified in the low-
energy region to improve their consistency with experimental data and the
dispersion relations. Agreement with data is achieved for the both ampli-
tudes from the threshold up to 1.8 GeV and with dispersion relations up
to 1.1 GeV. Consequences of the applied modifications, e.g. changes of the
S-wave lowest-pole positions, are presented.
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1. Introduction

A model independent analysis of the ππ scattering is an important tool
in getting information about the spectrum of light mesons. A reliable de-
scription of the process is, therefore, desirable to allow us to learn more on
nature and parameters of the mesons.

The phenomenological multichannel amplitudes for the S- and P-waves in
the ππ scattering were constructed without any specific assumptions about
dynamics of the process, only requiring analyticity and unitarity of the
S-matrix and applying the uniformization procedure [1]. This procedure can
be applied exactly in the two-channel case. However, in the three-channel
case, simplifying approximations have to be done resulting in a very poor
description of experimental data in the threshold region.
∗ Presented at the Cracow Epiphany Conference on the Physics at the LHC, Kraków,
Poland, January 8–10, 2014.

(1549)



1550 V. Nazari, P. Bydžovský, R. Kamiński

The crossing symmetry condition, which relates the S- and P-waves and
which is an important below the inelastic threshold, was not taken into ac-
count in the construction of these amplitudes [1]. Since the crossing symme-
try is properly included in the Roy-like dispersion relations [2], it is possible
and desired to improve the low-energy behavior of the three-channel am-
plitudes of [1] and to check their consistency with the dispersion relations
(DR).

Poles are singularities in the amplitudes and always related with reso-
nances. There are many poles in the ππ-interaction amplitudes and the most
important one is the lightest one which is called σ and known as f0(500).
In the multichannel uniformizing (MI) approach used in [1], a heavy and
broad σ meson is predicted, m = 829± 10 MeV and Γ = 1108± 22 MeV, in
disagreement (by many standard deviations) with results from DR [3] and
values recommended by the Particle Data Group [4]. It is, therefore, inter-
esting to show how much the modifications of the three-channel amplitudes
affect position of the pole connected with the σ meson.

In this note, we present an example of using the dispersion relations
for improving the low-energy behavior of a phenomenological three-channel
S- and P-wave ππ amplitudes and for imposing the crossing symmetry con-
dition on the amplitudes below 1.1 GeV.

2. Multichannel amplitudes and dispersion relations

Two channels coupled to the ππ one: KK̄ and ηη′ for S-wave and ρ2π
and ρσ for P-wave, were explicitly considered in construction of the three-
channel amplitudes [1]. The eight-sheeted Riemann surface was transformed
into a uniformization plane using a variable w in which the left-hand branch
point connected with the crossed channels was not taken into account. Also
the crossing symmetry condition was not considered in the construction. A
contribution of the left-hand cut was included in the background part of the
amplitude (note that in Ref. [5] the left-hand branch point in w was already
included in the S-wave analysis).

In the uniformization plane an influence of the ππ-threshold branching
point was neglected, keeping however the unitarity on the ππ cut, which was
a necessary approximation in the three-channel case [1]. Therefore, there
is a four-sheeted model of the initial Riemann surface in which the near-
threshold data are not described properly. Note that in the two-channel
case this approximation is not needed and the threshold data are described
correctly [6].

The resonance part of the matrix element Sij (i, j = 1 for pions) of
the S-matrix is generated by clusters of complex-conjugate poles and zeros
on the Riemann surface, which represent resonances [1]. For example, the
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f0(500) (formerly was f0(600)) resonance is represented by a cluster which
possesses zero only in the S11 matrix element on the physical sheet. Location
of poles on the unphysical sheets is given by the analytic continuation of the
matrix elements [5]. The background and resonant parts of the S-matrix
are separated and expressed via the Le Couteur–Newton relations with the
Jost matrix determinant d(w), where w is conformal energy variable [1]. In
the model of the Riemann surface, only the semi-sheets of initial Riemann
surface nearest to the physical region are considered. S-matrix elements are
represented as

S = SbgrSres , (1)

therefore [1],

S11 = Sbgr
11 S

res
11 =

dbgr(−k1, k2, k3)
dbgr(k1, k2, k3)

d∗res(−w∗)
dres(w)

, (2)

where Sbgr describes the background, kj are the channel momenta and Sres

the resonance contributions defined as

dres(w) = w−
M
2

M∏
r=1

(w + w∗r) , (3)

where the product includes all zeros wr of the chosen resonances and M is
a number of resonance zeros. The background part is modeled via complex
energy-dependent phases αj(s), j = 1, 2, 3 representing mainly an influence
of other channels and the neglected left-hand cut

dbgr(kj) = exp
[
−i
∑

αj(s)
]
. (4)

The resonance zeros wr and background parameters were obtained from
fitting the phase shifts and inelasticity parameters in the assumed channels
to experimental data [1]. Having matrix element S11, one easily can calculate
the full amplitudes f Il (s)in for given isospin I and spin l

f Il (s)in =

√
s

2k

S11 − 1

2i
, (5)

where k =
√
s/4−M2

π and M2
π is the pion mass.

In order to obtain a precise description of ππ amplitudes, we have applied
the Roy-like GKPY dispersion relations equations [2] with imposed crossing
symmetry for the S- and P-wave amplitudes. These new dispersion relations
impose quite strong constraints in our fits to the data on the analyzed ππ
interactions. They read
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Ref Il (s)out =

2∑
I′=0

CII
′

st a
I′
0 +

2∑
I′=0

3∑
l′=0

Smax∫
4m2

π

ds′KII′
ll′
(
s, s′

)
Imf I

′
l′
(
s′
)in

+ dIl (s) ,

(6)
where the first term is called “subtracting term” (STIl ) which is a linear com-
bination of scattering lengths aI′0 . In contrast to the standard Roy equations,
the subtracting term in GKPY is constant and does not depend on the s.

In the second term the KII′
ll′ (s, s′) are known kernels and thus we will

refer to integral terms as “kernel term” or KT(s). The input amplitudes
and upper limit of the integration is up to Smax = 1420 MeV [1, 2]. The
summation includes also D- and F-waves described by phenomenological
expressions [2]. In fact, subtracting term is smaller than kernel term which
is clearly the dominant one. Therefore, no big cancellations between any two
terms are needed in order to reconstruct the total real part of the amplitude.

The third term dIl (s), which is called “driving term” has the same struc-
ture as the kernel term, but is not related to the phenomenological input
amplitudes f Il (s)in. Its s and t dependence is given by Regge parameteri-
zation. As shown in Fig. 1 for both channels s as well as t which are the
Mandelstam variables, output amplitudes should be similar and differ only
by a crossing matrix factor Ĉst

Ts(s, t) = ĈstTt(t, s) . (7)

In the dispersion relation Eq. (6), crossing symmetry is imposed under the
assumption that Eq. (7) is valid.

Fig. 1. Crossing symmetry.

Here f Il (s)out and f Il (s)in are the output and input amplitudes. The
difference between Ref Il (s)out and Ref Il (s)in demonstrates a consistency of
the amplitudes with the dispersion relations (i.e. with crossing symmetry).
The smaller the difference, the better consistency with crossing symmetry
(see the last term in Eq. (9) below).
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3. Improvement of the amplitudes at low energies

Looking at results of the original amplitudes [1] from ππ threshold up
to 900 MeV, in Fig. 2 (a), one sees that there is a significant problem with
their threshold behavior. We replaced low-energy part of the amplitudes for
S- as well as P-wave by polynomial functions from ππ threshold up to the
so-called “matching point” (350–650 MeV). Value of polynomial functions
and their derivatives at the matching points for S- and P-waves are matched
with the original amplitude functions.

(a)

(b)

Fig. 2. Phase shift versus energy for S-wave.



1554 V. Nazari, P. Bydžovský, R. Kamiński

This polynomial is a near threshold expansion of the S- and P-wave
amplitudes and is determined by a generalized expansion in power of the
pion momentum k =

√
s/4−M2

π

Ref Il (s) =

√
s

4k
sin 2δIl = mπk

2l
[
aIl + bIl k

2 + cIl k
4 + dIl k

6 +O
(
k8
)]
. (8)

The amplitudes given by this expansion are matched with those for higher
energies from the original amplitudes fitted to the data. In Eq. (8) aIl is the
scattering length and bIl is the slope parameter with values: a00 = 0.211m−1π ,
b00 = 0.278m−3π , a11 = 0.0333m−3π , b11 = 0.00523m−5π [2]. Coefficients cIl and
dIl are calculated from the continuity conditions for the phase shift and its
first derivative at the matching point.

Figure 2 (a) shows the phase shifts for ππ interaction in the S-wave versus
energy from ππ threshold up to 1.8 GeV. The low-energy corrected original
amplitudes are denoted as extended amplitudes. Above the matching point,
the original and extended amplitudes are equivalent. Figure 2 (b) is focused
on the threshold region which shows how the extended amplitude solved the
threshold behavior problem of low-energy S-wave ππ interaction amplitude.

Parameters of the extended amplitude, which strongly influence the low-
energy behavior of the amplitudes, were optimized (re-fitted) to fit the ex-
perimental data and to achieve a better consistency with the dispersion
relations. It was performed by minimization of the χ2 function

χ2 =

1∑
I=0

(∑
i

(
δexpi − δthi

∆δexpi

)2

+
∑
i

(
ηexpi − ηthi

∆ηexpi

)2
)

(9)

+
2∑
I=0

∑
i

(
Refouti − Ref ini

∆DR

)2

.

Symbols δi and ηi denote experimental and calculated values of the
phase-shift and inelasticity parameter in the assumed channels of the
S- and P-waves. The summation, therefore, runs also over the channels
and partial waves. Refouti is calculated using the dispersion relations (6),
and Ref ini is the real part of the input amplitude on the right-hand side in
Eq. (6). The number of experimental points is 492 and number of points in
DR is 26 (note that we use data from S0- and P1-waves while for DR part
the output amplitudes for the S0-, S2- and P1-waves). The scale parameter
∆DR = 0.01 makes a reasonable weight of the DR contribution to χ2. Note
that the last term in Eq. (9) provides a coupling between the S- and P-waves
which would be otherwise independent in the analysis.
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The re-fitted parameters are zeros of the lowest poles, f0(500), f0(980),
f0(1500) and ρ(770), the background parameters, the matching points and
scattering lengths for S- and P-wave in the ππ channel. Experimental data
used in this analysis are from Ref. [1] supplemented near the threshold with
phases from the dispersive analysis [2] and data from the NA48 Collabora-
tion [8].

4. Results

Applying the modifications, we achieved the S- and P-wave amplitudes
for the ππ scattering. These modified amplitudes provided χ2/n.d.f. = 18.5
(n.d.f. = 483) for the extended amplitudes, but the re-fitted parameters
significantly improved the result, χ2/n.d.f. = 1.3. The biggest and more
important improvement was that for the DR contribution. The last term in
Eq. (9) changed from 1573.2 to 58.7 (see Table I), which suggests a significant
improvement of consistency of the amplitudes with the crossing symmetry.
The re-fitted amplitudes provided also proper values of the phase shifts
and inelasticity parameters in the assumed coupled channels as the original
amplitudes.

TABLE I

Values of χ2 for S-wave before and after fitting.

Data DR Total

χ2 initial 7727.6 1573.2 8920.5
χ2 final 567.3 58.7 626.0

Figures 3 and 4 illustrate the Ref00 (s) before and after fitting. Black and
gray points represent value of output and input respectively for specified
energies. Comparison of these two figures shows how significantly the differ-
ence between input Ref00 (s)in and output Ref00 (s)out amplitudes decreased
after re-fitting the chosen parameters.

Positions of poles changed strongly for the f0(500) resonance, e.g. on the
sheet II the pole shifted from 617 − i554.0 MeV for the original amplitude
to 458− i289 MeV in the input one (449+15

−14 − i287+14 MeV in the output).
Note that the new pole position accords well with the result from the analysis
based on the ChPT and Roy-like equations (441+16

−8 − i272+9
−12.5) [7] and the

result from the analysis based only on the Roy-like equations (445+25
−25 −

i278+22
−18) [3].
The poles of f0(980) shifted slightly, e.g. on the sheet II from 1013 −

i31 MeV to 997 − i22 MeV in the input amplitude (997+2
−2 − i22+2

−2 MeV in
the output one), what is more consistent with the values suggested by the
Particle Data Group: 980+20

−20 − i(25–50) MeV [4].
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Fig. 3. Ref00 (s) for input and output before fitting.
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Fig. 4. Ref00 (s) for input and output after fitting.

The poles of f0(1500) shifted, e.g. on the sheet II from 1502.4 −
i236.8 MeV to 1507.01− i171.8 MeV in the input amplitude (1548.47+19.9

−19.9−
i222.778+21.6

−21.6 MeV in the output one), while the values suggested by the
Particle Data Group are 1505+6

−6 − i218.778+7
−7 MeV [4].

The poles of ρ(770) moved up by less than 1%, e.g. on the sheet II from
761+4
−3 − i71+1.9

−2.3 MeV to 766 − i73 MeV in the input amplitude (762+4.7
−4.7 −

i73+4.9
−4.6 MeV in the output one).
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Re-fitted scattering lengths for S-wave and P-wave become a00=0.221m−1π
and a11 = 0.0328m−3π respectively. Re-fitted values of the background pa-
rameters are small suggesting that important part of dynamics is included
in the resonant part of S-matrix. However, in the S-wave the background
phase shift becomes negative starting at the ππ threshold which seems to
be necessary for a good description of the data.

Figure 5 shows positions of the σ poles on the complex plane from various
experiments and from the present analysis. PDG 2010 is the area that was
expected to see the σ pole before 2012 (a broad region with M = 400–
1200 MeV and Γ = 2× (250–500) MeV). Since 2012 this area became much
smaller (PDG 2012) due to improvement of our knowledge on the threshold
parameters and ππ amplitudes. In our analysis, position of the pole moves
from 617 − i554.0 MeV for the original amplitude to 458 − i289 MeV after
fitting.

Fig. 5. Movement of the σ pole due to the fit to the GKPY equations.

5. Conclusions

To summarize, agreement of the phase shifts with low-energy data was
improved for the new re-fitted S- and P-wave ππ scattering amplitudes. The
amplitudes are calculated with the scattering lengths and slope (effective-
range) parameters consistent with results of calculations based on DR and
ChPT. Consistency of the three-channel amplitudes with the dispersion re-
lations was improved significantly for the energies from the threshold up to
1.1 GeV which means that the amplitudes better fulfill the crossing sym-
metry condition. The lowest pole in S-wave is shifted to lower energy and
nearer to the real axis which results in smaller values of the mass and width
for the σ meson.
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