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Exactly solvable potentials of the position-dependent mass Schrödinger
equation are generated by taking ‘Hulthén plus hyperbolic cotangent po-
tential’ as a parent system. We apply a simple transformation method
that includes a co-ordinate transformation followed by a functional trans-
formation of wave function, and also a set of plausible ansatze. The mass
function of the parent system gets transformed to a new mass function
of the generated system. The generated potentials are mostly Sturmian,
which are energy dependent for non-power law potentials. Some of the
generated Sturmian potentials can be converted into normal potentials by
regrouping various potential parameters. The wave functions of generated
systems are normalizable in most cases.
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1. Introduction

In quantum mechanics, there is a limited number of exactly solvable po-
tentials (ESP) which yield exact analytic solutions of the Schrödinger equa-
tion. Therefore, for non-solvable potentials one has to depend on various ap-
proximation techniques such as perturbation theory, variational technique,
WKB approximation method etc. However, the successful implementation
of these approximation schemes for a given quantum system, largely depends
on the nearness of the potential to some exactly solvable potential (ESP).
† hansrajb12345@gmail.com
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This motivates us to find more and more ESPs which will facilitate prac-
tical quantum mechanical calculations. Besides, non-perturbative solutions
of different potentials may lead to new physical ideas as well as new calcu-
lational techniques in quantum physics. Therefore, researchers are trying to
device different methods to generate or construct exactly solvable potentials.

In the solid state physics, the concept of position-dependent effective
mass has remarkably improved the understanding of several physical prop-
erties ranging from electronic conduction to complex optical phenomenon [1].
The envelope function of conduction band obeys the Schrödinger equation
with position-dependent mass (PDM) [2]. In recent years, PDM Schrödinger
equations have received considerable attention from a number of researchers.
Special applications of PDM Schrödinger equations are found in the investi-
gation of the electronic properties of semiconductors [2, 3], quantum dot and
quantum well [4, 5], quantum liquid [6], nuclear many body problems [7] etc.
Since mass is a function of position, the kinetic energy operator is non-
commutative and the Hamiltonian operator remains non-Hermitian. Von
Roos proposed [2] the kinetic energy operator in terms of three ambiguous
parameters to make the effective Hamiltonian Hermitian where the effective
potential is expressed as a sum of real potential profile and a modification
emerging out of PDM.

Position-dependent mass Schrödinger equations are relatively more com-
plex to solve unlike ordinary Schrödinger equations (with constant mass).
Different techniques known for solving constant mass Schrödinger equations
or extension of them, have been applied to solve PDM Schrödinger equa-
tions. For example, point canonical transformation (PCT) [8–12], Nikiforov–
Uvarov (NU) method [13–15], supersymmetric (SUSY) approach [16, 17],
quadratic algebra [18], analytical method [19], series solution method [20],
Durboux transformation (DT) [21], etc. have been used in the literature. In
the similar spirit of SUSY approach, extended transformation (ET) [22] me-
thod has been developed to generate new ESPs of constant mass Schrödinger
equation from an already known exactly solvable potential. The ET method
has been successfully exploited for generation or construction of ESPs from
power law, non-power law and sometimes from multiterm ESPs [23–28] and
also ring shape potentials [29].

Our main aim in this paper is to apply the ET method in PDM Schrödin-
ger equations to generate exactly solvable potentials from Hulthén plus hy-
perbolic cotangent potential (which is a non-power law potential). The ET
includes a co-ordinate transformation (CT) followed by a functional transfor-
mation (FT) and a set of plausible ansatze to mould the transformed equa-
tion in the form of Schrödinger equation. While applying the ET method in
PDM Schrödinger equations, we had the advantage that the mass function of
parent system gets transformed to new mass function for generated system.
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The method provides us with a direct way of obtaining wave functions, en-
ergy eigenvalues and mass function for generated system from already solved
system without actually solving the PDM Schrödinger equation. As in the
case of constant mass system, the potentials of PDM Schrödinger equation
generated (by ET) from non-power law potential are also in general Stur-
mian; some of which can be made normal by regrouping various potential
parameters.

The organization of the paper is as follows: the ET method to solve
PDM Schrödinger equation is described in Sec. 2, the method applied to
generate new QSs from already solvable Hulthén plus hyperbolic cotangent
potential is presented in Sec. 3, the normalizability property of the trans-
formed wave functions is discussed in Sec. 4. Conclusions and important
results are presented in Sec. 5.

2. Extended transformation (ET) to solve
PDM Schrödinger equation

We start with one-dimensional position-dependent mass effective Hamil-
tonian [30] (2m0 = ~ = 1)

Heff = − d

dx

[
1

m(x)

d

dx

]
+ V eff(x) , (1)

where V eff(x) is effective potential given by

V eff(x) = V (x) + Uα(x) . (2)

Here V (x) is real potential profile and Uα(x) is the modification of potential
arising out of PDM. Uα(x) is given by

Uα(x) =
1

2
(β + 1)

m′′(x)

m2(x)
− [α(α+ β + 1) + β + 1]

m′2(x)

m3(x)
, (3)

where α and β with γ are ambiguous parameters, called Von Roos ambigu-
ity [2] satisfying the relation α+ β + γ = −1 and m(x) is the dimensionless
mass function related to constant mass m0 and PDM M(x), by the re-
lation M(x) = m0m(x). The prime stands for derivative of the function
with respect to its argument. Using equation (1), one dimensional position-
dependent mass (1D-PDM) Schrödinger equation becomes[

− d

dx

[
1

m(x)

d

dx

]
+ V eff(x)

]
ψ(x) = Enψ(x) .
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The above equation finally takes the form

ψ′′(x)− m′(x)

m(x)
ψ′(x) +m(x)

[
En − V eff(x)

]
ψ(x) = 0 . (4)

Let VA(x) be a known physical potential, hereafter termed as A-quantum
system (A-QS). Equation (4), which is exactly solvable for A-QS is written as

ψ′′A(x)−
m′A(x)

mA(x)
ψ′A(x) +mA(x)

[
EAn − V eff

A (x)
]
ψA(x) = 0 , (5)

where energy eigenvalues EAn and corresponding wave functions ψA(x) are
known for given V A(x) and mA(x). We now invoke ET, which comprises of
CT followed by FT as given below:

CT
x→ gB(x) , (6)

FT
ψB(x) = f−1

B (x)ψA(gB(x)) , (7)

where ψB(x) stand for wave functions of transformed system, hereafter called
the B-quantum system (B-QS). In constant mass systems, mass is the same
for generated system and parent system, as mass is independent of posi-
tion. For a system with PDM, mass is a function of position (co-ordinate).
Therefore, mass function of a system with PDM should transform under a
co-ordinate transformation. We, therefore, write the mass function of B-QS
as

mB(x) = mA(gB(x)) . (8)

The transformation function gB(x) must be a differentiable function of at
least class C3. The gB(x) and the modulated amplitude f−1

B (x) have to
be specified within the framework of ET. Application of equations (6), (7)
and (8) in equation (5) of the A-QS, gives

ψ′′B(x) +
d

dx
ln

(
f2
B

g′B(x)mB(x)

)
ψ′B(x) +

[{
d

dx
ln fB(x)

}
×
{
d

dx
ln

(
f ′B(x)

g′B(x)mB(x)

)}
+ g′ 2B (x)mB(x)

{
EAn −V eff

A (gB)
}]

ψB(x)=0 .

(9)

Consistency demands that the coefficient of ψ′B(x) in equation (9) must be
identical to −m′B(x)

mB(x) . Therefore, we put

d

dx
ln

(
f2
B

g′B(x)mB(x)

)
= −

m′B(x)

mB(x)
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which fixes fB(x) as

fB(x) = NBg
′ 1
2
B (x) , (10)

where NB is an integration constant and plays the role of normalization
constant of the energy eigenfunctions of B-QS. Application of equation (10)
in equation (9) gives

ψ′′B(x)−
m′B(x)

mB(x)
ψ′B(x) +mB(x)

[
1

2mB(x)
{gB, x} −

1

2

m′B(x)

m2
B(x)

g′′B(x)

g′B(x)

+g′ 2B (x)
{
EAn − VA(gB)− UαA(gB)

} ]
ψB(x) = 0 , (11)

where

{gB, x} =
g′′′B (x)

g′B(x)
− 3

2

(
g′′B(x)

g′B(x)

)2

(12)

is the Schwartzian derivative symbol and UαA(x) is the modification of po-
tential for A-QS. If the potential VA(x) happens to be a multiterm potential
having n-terms, one can choose various terms in (2n − 1) different ways
as working potential. For simplicity, we choose single term potential only
as working potential which is denoted by V w

A (x). In order to recast equa-
tion (11) in the standard form of 1D-PDM Schrödinger equation for B-QS,
we have to make the following plausible ansatze which is an integral part of
the method

g′ 2B (x)V w
A (gB(x)) = −EBn , (13)

g′ 2B (x)EAn = −V (1)
B (x) , (14)

−g′ 2B (x)[VA(gB(x))− V w
A (gB(x))] = −V (2)

B (x) , (15)

1

2mB(x)

[
{gB, x} −

m′B(x)

mB(x)

g′′B(x)

g′B(x)

]
= −V (3)

B (x) , (16)

and
g′ 2B (x)UαA(gB) = UαB(x) . (17)

In equation (13), V w
A (gB(x)) is known in terms of gB(x). Therefore, so-

lution of equation (13) specifies the functional form of gB(x). The gB(x)
is used in calculating mass function mB(x) through equation (8). Again,
gB(x) and its derivatives, mB(x) and its derivatives are utilized to calcu-
late V (1)

B (x), V (2)
B (x), V (3)

B (x) and UαB(x) (the modification of potential
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for B-QS) through equations (14)–(17) respectively, which yield the B-QS
potential VB(x) as

VB(x) = V
(1)
B (x) + V

(2)
B (x) + V

(3)
B (x) (18)

and effective potential V eff
B (x) as

V eff
B (x) = VB(x) + UαB(x) . (19)

From equation (14), V (1)
B (x) will be in the form

V
(1)
B (x) = −C2

Bv(x) ,

where v(x) is a function of x and C2
B is a constant independent of x, called

characteristic constant for B-QS, which is equal to the product of a function
f(EBn ) and EAn [23] i.e.

C2
B = f

(
EBn
)
EAn .

This equation gives B-QS energy eigenvalues as

EBn = f−1
(
C2
B

)
EA

−1

n . (20)

Finally, we get 1D-PDM Schrödinger equation for B-QS in the form

ψ′′B(x)−
m′B(x)

mB(x)
ψ′B(x) +mB(x)

[
EBn − V eff

B (x)
]
ψB(x) = 0 (21)

with exact energy eigenfunctions

ψB(x) = NBg
′
B
− 1

2ψA(gB(x)) . (22)

The normalizability condition for the B-QS wave functions is

I(−∞,+∞) =

gB(+∞)∫
gB(−∞)

| ψB(x) |2 dx = finite . (23)

3. Application of ET to generate ESPs of
PDM Schrödinger equation

We have considered the Hulthén plus deformed type hyperbolic cotan-
gent potential as A-QS, whose exact solution of the 1D-PDM Schrödinger
equation is available [15]. The A-QS potential is given by

VA(x) = −V1
exp(−2λx)

1− q exp(−2λx)
+ V2 cothq(λx) . (24)
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For
mA(x) =

1

1− q exp(−2λx)
, (25)

the discrete energy eigenvalues are

EAn = −4λ2
[
δ −

(
n+ µ+ 1

2

)]2
+ V2 (26)

and the corresponding wave functions are

ψA(x) = NAS
µ+ 1

2
A (1− SA)λAP (2µ,2λA)

n (1− 2SA) , (27)

where

λA =

(
V2 − EAn

4λ2

) 1
2

,

µ =

(
1

4
− β + 1

2
− α(α+ β + 1)

) 1
2

,

δ = ±
(

2qV2 − V1

4qλ2
− α(α+ β + 1)

) 1
2

,

and
SA(x) = mA(x) =

1

1− q exp(−2λx)
.

P
(2µ,2λA)
n (1− 2SA) are well known Jacobi polynomials and NA is normaliza-

tion constant. The parameters µ, δ and λA satisfy the relation

µ+ λA = δ − n− 1
2 . (28)

3.1. First order transformation

From A-QS potential given by equation (24), we have chosen the follow-
ing working potential

V w
A (x) = −V1

exp(−2λx)

1− q exp(−2λx)
. (29)

Application of equation (29) into equation (13), gives the transformation
function gB(x) as

gB(x) =
1

λ
ln sec pnx , (30)

where

p2
n =

qλ2EBn
V1

. (31)
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Local property gB(0) = 0 gives q = 1. The gB(x) given by equation (30),
when applied in equation (8) gives mass function for B-QS as

mB(x) = csc2 pnx . (32)

Again, application of equation (30) in equations (14)–(16) yields

V
(1)
B (x) = C2

B tan2 pnx , (33)

V
(2)
B (x) =

p2
nV2

λ2

(
sec2 pnx+ 1

)
, (34)

and

V
(3)
B (x) = −p

2
n

4
sec2 pnx , (35)

respectively, where

C2
B =

p2
n

λ2

(
−EAn

)
(36)

is the characteristic constant of B-QS, obtained from the transformation of
A-QS. Equation (36) subsequently provides us with energy eigenvalues of
B-QS. Equation (36) can also be written as

C2
B =

4λ2EBn
V1

[[
δ −

(
n+ µ+

1

2

)]2

− V2

4λ2

]
. (37)

Now equation (18), with the help of equations (33)–(35) yields the newly
generated potential of B-QS as

VB(x) = C2
B tan2 pnx+

[
p2
nV2

λ2
− p2

n

4

]
sec2 pnx+

p2
nV2

λ2
. (38)

The potential VB(x) is n-dependent through the n-dependence of pn. There-
fore, VB(x) specifies a Sturmian QS. Each value of n for B-QS represents an
exact QS and B-QS consists of n number of systems. The Sturmian B-QS
can be converted into normal as well as physical by system specific regroup-
ing method where we have to redefine the parameters of A-QS preserving
the type of constraint equations. To make p2

n n-independent, we have made
V1 → Vn by setting V1 = qλ2EB

n
s2

, where a scale factor s is introduced. This
leads to pn → p = s, a constant. As a result, the Sturmian form of B-QS
gets converted into the normal form as

VB(x) = C2
B tan2 sx+ s2V0 sec2 sx+ s2

(
V0 + 1

4

)
, (39)
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where
V0 =

V2

λ2
− 1

4
. (40)

Equation (17) leads modification UαB(x) to

UαB(x) = 4s2

[
β + 1

2

(
1 + cos2 sx

)
− [α(α+ β + 1) + β + 1] cos2 sx

]
.

(41)
As a consequence, equation (37) gives the quantized energy eigenvalues of
B-QS as

EBn = −4s2
[{
n+ µ+ λB + 1

2

}2 − 1
2

(
V0 + 1

4

)
+ α(α+ β + 1)

]
, (42)

where

λ2
B =

1

4

(
C2
B

s2
+ V0 +

1

4

)
. (43)

Parameters µ and λB satisfy the relation

µ+ λB = φ− n− 1
2 , (44)

where

φ2 =
1

2

(
V0 +

1

4

)
− EBn

4s2
− α(α+ β + 1) . (45)

From equation (22), we have got the exact energy eigenfunctions of the newly
generated B-QS as

ψB(x) = NBS
µ+ 1

2
B (1− SB)λB+ 1

4P (2µ,2λB)
n (1− 2SB) , (46)

where NB is normalization constant and

SB(x) = mB(x) = csc2 sx .

3.2. Second order transformation

From B-QS potential as obtained from equation (39), we can choose
any term as working potential to generate another new potential hereafter
designated as C-QS by applying ET. We have chosen the following single
term working potential for simplicity as in the previous case

V w
B (x) = s2V0 sec2 sx . (47)

Applying the same procedure as in the generation of B-QS, we have got the
transformation function for C-QS

gC(x) =
1

s
arccos sech(anx) , (48)
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where an = sηn and

η2
n =
−ECn
s2V0

, (49)

the mass function of C-QS as

mC(x) = coth2(anx) , (50)

the Sturmian form of potential for C-QS as

VC(x) = C2
C sech2(anx) + a2

n

(
4λ2

C −A2
)

tanh2(anx) + a2
nA

2 sech2(anx)

+
3

2
a2
n tanh2(anx) sech2(anx) +

a2
n

4
tanh4(anx) , (51)

and the modification term of potential as

UαC = 4a2
n

[
β + 1

2
sech2(anx)

{
sech2(anx) + 1

}
−[α(α+ β + 1) + β + 1] sech4(anx)

]
, (52)

where A2 = V0 + 1
4 and C2

C is the characteristic constant of C-QS obtained
from the transformation of B-QS, given by

C2
C = −η2

nE
B
n . (53)

The C-QS potential, however is not possible to convert into normal by any
system specific regrouping method. Equations (49) and (53) give the energy
eigenvalues of C-QS as

Ecn = −
C2
Ck

2
C

4
[{
n+ µ+ λC + 1

2

}2 − A2

2 + α(α+ β + 1)
] , (54)

where k2
C = A2 − 1

4 and λ2
C =

C2
B

4s2
+ A2

4 . The parameters λC and µ satisfy
the relation

µ+ λC = σ − n− 1
2 , (55)

where σ2 = A2

2 −
C2

Ck
2
C

4EC
n
−α(α+β+ 1). Again, we have got the exact energy

eigenfunctions for C-QS as

ψC(x) = NCS
µ+ 3

4
C (1− SC)λCP (2µ,2λC)

n (1− 2SC) , (56)

where NC is normalization constant and

SC(x) = mc(x) = coth2(anx) . (57)
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4. Normalizability of the transformed wave function

A very useful property of transformation method is that wave functions
of the generated quantum systems are almost always normalizable. Equa-
tion (23) is the normalizability condition for wave functions of generated
systems. Using equations (22) and (13) in equation (23), we have

| NB |2
gB(+∞)∫
gB(−∞)

ψ∗A(x)

[
−
V w
A (x)

EBn

]
ψA(x)dx =| NB |2

〈V w
A (x)〉
−EBn

= finite .

(58)
All the wave functions ψB(x) are normalizable for which EBn 6= 0 [23].
Since ψA(x) is normalizable and V w

A (x) represents real physical system, the
quantity 〈V w

A (x)〉 necessarily exists, indicating that ψB(x) is normalizable.
Hence, C-QS wavefunctions ψC(x) are also normalizable.

5. Conclusion

In this paper, we have generated two new exactly solvable potentials
of the PDM Schrödinger equation from an already exactly known solvable
potential in equations (39) and (51) respectively. We have applied a sim-
ple transformation method comprising of a coordinate transformation and
a functional transformation of wave function. Mass function of the parent
system (A-QS) has found to be got transformed to the new mass function for
the generated system. The newly generated potentials are the non-power law
Sturmian potentials of which B-QS has been made normal by system specific
regrouping method. It is evident that the ET may be applied successively
any number of times to generate new QSs, when we are considering a non-
power law potential. In most cases, the wave functions of the generated sys-
tems are normalizable. The present formalism can be further generalized to
N -dimensional PDM Schrödinger equation [31].

We remain indebted to late Prof. S.A.S. Ahmed, Gauhati University,
Guwahati-14, Assam (India). We had initiated the problem under his guid-
ance and received valuable help at the initial stage of this work.
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