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Recently proposed by Korsch and Gliick [Eur. J. Phys. 23, 413 (2002)]
an extremely simple method for computation of eigenvalues via direct rep-
resentation of position and momentum operators in matrix form is suc-
cessfully applied to the calculation of energies of the ground and excited
states of the x2y? Hamiltonian and its supersymmetric quantum matrix
extensions.
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1. Introduction

The concept of supersymmetry or fermion-boson symmetry is one of
the most fascinating topics in the quantum field theory, which provides a
unified description of bosons and fermions [1-5]. Although it has not yet
been observed in nature, thousands of papers have been written on this sub-
ject. Its validity in particle physics follows from the common belief in grand
unification through the feasibility of incorporating quantum gravity. Super-
symmetric quantum mechanics, introduced in 1981 by Witten [6] is based
on the simplest superalgebra, in order to provide a simple non-relativistic
model for the spontaneous SUSY breaking mechanism. Witten’s formulation
of non-relativistic SUSY quantum mechanics attracted considerable atten-
tion in the last decade and is still serving as a useful tool in quantum physics
rest on the existence of two operators @) and P. @ is called the supercharge
and P is Witten parity operator with eigenvalues + 1. The quantum system
is supersymmetric if operators obey the following rules:
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{o.P} = @P+PQ =0, (1)
0= Q,
P =1.

Supersymmetry transformations are generated as

Q |fermion) = [boson) , Q |boson) = |fermion) (2)
and

P |fermion) = — |fermion) , P |boson) = |boson) . (3)

An interesting example is supercharge

~

Q = (px — az) 0z + (py — ay) oy, (4)

where a,, a, are components of external vector potential, characterizing a
magnetic field B, = 0;a, — dya,, which is perpendicular to the -y plane.
The corresponding supersymmetric Hamiltonian

= Q% = (o — )+ (py— )" Buo 6)

is identical with the two-dimensional Pauli Hamiltonian. The Pauli matrices
are formulated in the following way:

(10 (0 1
oo = 0 1 ) Ox = 1 0 ’
(0 —i (10
v=\li 0o ) FTlo0 -1 )"

Ground state energy of this Hamiltonian is zero, as has been shown by
Aharonov and Casher [7] using Atiyah—Singer index theorem.

2. Matrix representation and spectrum of x2y? Hamiltonian

In 1983 B. Simon in his remarkable paper [8] solved the problem sug-
gested by J. Goldstone and R. Jackiw on the existence of discrete spectrum
for the Hamiltonian A

H =p3+p; +2*9°. (6)
When looking at the z?y? potential shown in Fig. 1, it is clear that the
existence of the bound states is not trivial, especially when compared with

potential of the archetypal two-dimensional harmonic oscillator shown in the
left panel.
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Fig. 1. Comparison of the 2D harmonic potential (left) with 22y? potential (right).

It is naturally expected that systems with potentials equal to zero on
an unbounded set, have continuous spectrum. Using five different methods,
Simon demonstrated the discreetness of the spectra. The reason that the
spectrum turns out to be exclusively discrete is due to the quantum fluc-
tuations in the transverse directions, as has been only recently shown by
Korcyl [9]. When a particle is moving in one of the valleys, the transverse
potential is the potential of a harmonic oscillator with frequency propor-
tional to the distance from the centre of valley. The zero-mode energy of
such fluctuations increases when the particle is moving deep into the valley.
Therefore, the particle is exposed to an effective potential barrier, which
prevents it from escaping.

Recently, Korsch and Gliick in [10] proposed a new, extremely simple
method for computation of eigenvalues via representation of position and
momentum operators in matrix form, and our first aim is to apply it for
the calculation for the energies of the ground and excited states of the z2y?
Hamiltonian. First, we would rewrite Hamiltonian given by (6) in the mathe-
matically more precise form of Kronecker tensor product. For this purpose,
we introduce the definition of the Kronecker tensor product of two matrices.

Let A := [a;;] be a matrix of the order of m x n and B := [by] be a matrix
of the order of r x s. Then, the Kronecker product of A and B is defined as
anB alzB PN alnB
a21B a22B e a9 B
A® B := ) . " (7)

amiB  ameB ... amnB
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Position and momentum operators, & and p respectively, are represented (in
a basis of normalized eigenstates of harmonic oscillator |u)) by matrices
and p, respectively [10]

o

S

S
|
Sl

Thus, the x?y? Hamiltonian (6) is expressed in matrix form using the
Kronecker product as

H=ploIy+Ivop, +2° 0y, (10)

where Iy is the unit matrix of dimension V.

The obtained eigenvalues for various dimensions of matrix representation
of Hamiltonian (10) are given in Table I. As can be seen, the convergence
of (non-degenerate) ground state (Fig. 2) as well as first 19 excited states
(some of them are degenerate) is rather fast.

1.1082245
1.1082240

1.1082235 -
o
]

1.1082230

1.1082225

1.1082220 . . ’ . !
20 25 30 35 40
N

Fig. 2. Convergence of ground state eigenvalue for 22y? Hamiltonian.
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TABLE 1

Eigenvalues of the x2y? Hamiltonian (10) for various dimension N of z and p

matrices.

Eig. Dimension of  and p matrix

n N =20 N =40 N =170 N = 100

0 1.1082234604  1.1082231576  1.1082231576  1.1082231576
1 2.3786369867  2.3786378305  2.3786378293  2.3786378293
2 2.3786369867  2.3786378305  2.3786378293  2.3786378293
3 3.0561855644  3.0560811678  3.0560811547  3.0560811547
4 3.5153412537  3.5149490976  3.5149490453  3.5149490453
5 4.0894727319  4.0934693830  4.0934692764  4.0934692763
6 4.0894727319  4.0934693830  4.0934692764  4.0934692764
7 4.7655349352  4.7527752560  4.7527724020  4.7527724018
8 5.0049162416  4.9849691677  4.9849635877  4.9849635875
9 5.0112765593  5.0112792815  5.0112792815  5.0112792816
10 5.2843297458  5.4989372186  5.4989795160  5.4989795149
11 5.2843297458  5.4989372186  5.4989795160  5.4989795149
12 6.1606466816  6.1451100151  6.1448192842  6.1448192749
13 6.1606466816  6.2374887302  6.2371281175  6.2371281062
14 6.3467376678  6.6695933096  6.6723500376  6.6723500394
15 6.4466426047  6.6695933096  6.6723500376  6.6723500394
16 7.0868715122  7.1748007456  7.1810981730  7.1810982462
17 7.0868715122  7.1748007456  7.1810981730  7.1810982462
18 8.0741850074  7.3857108935  7.3755740344  7.3755734790
19 8.1410850165  7.3914533591  7.3817605127  7.3817599769

3. Supersymmetric extension of x2y? Hamiltonian

Supermembranes represent models of supersymmetric extended objects
and can be obtained as a large N limit of supersymmetric quantum mecha-
nical model of N x N matrices. To investigate potential instability of su-
permembranes, de Witt et al. [11] proposed a toy model of supermembrane

as a supersymmetric extension of 22y? Hamiltonian

H = p2 +p2 + %9 + 26, — §0y.

The supercharge for this model is given by

Q = QT = PgO0g + PyOy — TYO,

and the Witten parity operator

~

R 1
P=——
V2

(0p +02) .

Such a triple (ﬁ , P, Q) exhibits supersymmetry rules (2).

(11)
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The supersymmetric 22y? Hamiltonian (11) has a representation in ma-
trix form

H=ple® Iy @+ Iy®@p.®0+1°@y° ® oo
+2RINRo, —INRY R0y, (14)

where Iy is the unit matrix of dimension V.

In the previous section, we have shown that the spectrum of bosonic
z?y? Hamiltonian is discrete and particle is confined. Now, we have much
more complicated situation, because previously system looked like harmonic
oscillator in vicinity of the potential valley, but now inclusion of fermionic
part may lower the energy barrier to zero value (ground state energy of
supersymmetric system, with unbroken symmetry, equals exactly to zero). It
means that the supermembrane would be unstable. To calculate eigenvalues
of this interesting model, we have successfully used the Korsch—Gliick matrix
method [10].

Calculated two-fold degenerated eigenvalues of SUSY Hamiltonian (11)
are listed in Table II.

The Korsch and Gliick method works well also for supersymmetric exten-
sion of x2y? Hamiltonian, but the convergence is slower (Fig. 3) as has been
already shown on this and related supersymmetric models [12-20]. One can
predict the energy of the ground state as a function of the number of basis
functions with very high accuracy, but in any concrete numerical calcula-
tion (using a finite basis) it cannot be expected to get zero energy, unless
the limiting case of infinite basis is considered [16].

0.14 -
012 | ¢
»
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o 008 | o
o *
006 1 %
0.04 -

0.02

.0.--.0-..--..--00

0 50 100 N 150 200 250

Fig. 3. Depicted convergence of ground state eigenvalue Ey for the SUSY Hamilto-
nian (11), calculated for large dimensions of x and p matrices.
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TABLE II

Eigenvalues of the of SUSY x?y? Hamiltonian (14) for various dimension N of x

and p matrices.

Eig. Dimension of  and p matrix

n N =40 N =284 N =90

0 0.032108991636366  0.015278224251210  0.014254035840192
1 0.032108991638310  0.015278224254877  0.014254035842510
2 0.128271168480141  0.061088549177454  0.056995604423391
3 0.128271168480540  0.061088549190081  0.056995604442740
4 0.287973528380799  0.137355630143736  0.128161269237406
5 0.287973528382465  0.137355630151015  0.128161269253507
6 0.510269431088999  0.243945648746561  0.227638829227932
7 0.510269431090023  0.243945648761428  0.227638829246742
8 0.793540541812128  0.380651789064673  0.355256071580868
9 0.793540541812173  0.380651789065249  0.355256071590181
10 1.134933765599259  0.547168882804748  0.510761460284285
11 1.134933765600634  0.547168882817118  0.510761460311879
12 1.529039903815373  0.743049901993007  0.693791653783149
13 1.529039903815540  0.743049901997125  0.693791653794402
14 1.964579809312500  0.967629627604936  0.903815893482729
15 1.964579809313219  0.967629627626407  0.903815893512385
16 2.416399135312330  1.219884623196185  1.140036978674562
17 2.416399135313741  1.219884623202547  1.140036978680519
18 2.838138042593580  1.498161352837602  1.401205525000713
19 2.838138042595983  1.498161352843226  1.401205525021434

This supersymmetric 22y? model has two flat directions (z,0) and (0, y).

In a recent study [12], one flat direction has been eliminated using potential

V(z,y) = 2%y* +y>. (15)

These authors studied also a third model with both flat directions removed
using potential 22(y? + 1)2 + y2. This is also a supersymmetric model with
supercharge

Q = Py + pyoy — (zy + z — iy)o, (16)

and Hamiltonian

H=@Q*=pi+p,+2*(y+ 1)’ +y* + a0, — (y+ 1o (17)

As has been shown [12], a model without flat directions (potential 22 (y +
1)2 + 4?2 in direction (x — 0o, y = —1) remains equal to 1) has a non-empty
continuous spectrum comprising the interval [1, 00) (Fig. 4), moreover, there
is a ground state with energy ~ 0.8 below the bottom of the essential spec-
trum. Our results shown in Table III numerically support this hypothesis,
with energy Ej converged to value Fy = 0.88549 (see Table IIT and Table IV
for comparison). The convergence of eigenvalues is much faster compared
with the model with flat directions (Fig. 5 and 6).
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Fig.4. Convergence of eigenvalue E; to value 1 for model Hamiltonian (17) with

eigenvalue space spanned by interval [1,00]. There is also ground state eigenvalue

below E; as reported in [12].
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Fig. 5. Convergence of ground state eigenvalue for Hamiltonian with potential with
one flat direction (15).

Convergence rates of ground state energy for all studied models are sum-
marized in Fig. 7. The slowest convergence rate is observed for supersym-
metric model with two flat directions, slightly better convergence is found
for model with one flat direction, and for remaining two models with dis-
crete levels, convergence rate is very fast, similar to those observed for one-

dimensional cases studied in [10].



FEigenvalues of Supersymmetric Quantum Matriz Models

1751

TABLE III

Eigenvalues of the of SUSY z%y? Hamiltonian (17) without any flat direction, [12]
for various dimension N of x and p matrices.

Eig.

Dimension of & and p matrix

N =40

N =84

N =90

©CONOOUA WNHO (3

0.885729458545192
1.153287608446259
1.220704996350386
1.438106824695513
1.623456524712892
1.929158045480484
2.216223640582740
2.596618648784355
2.933141275247389
3.273428318232698
3.539891290336405
3.792948995030348
4.239145877600699
4.508828281572678
5.048068693450596
5.078649991537276
5.268406333686308
5.732493504647465
6.066454362534508
6.183475393529313

0.885495272317939
1.102021888902019
1.124397173962305
1.248313539871256
1.328151959031734
1.498066014272517
1.637300148648031
1.852507452228366
2.045297865024240
2.304034610959533
2.539819440106451
2.829380297906724
3.075991534916736
3.325479164001877
3.544747326391260
3.748257451523354
4.075881969766556
4.325488912076878
4.744781398933587
4.795904888482301

0.885491967562919
1.098262566535757
1.118197728956234
1.235853920583860
1.309060873703431
1.469879889993195
1.599137825528064
1.802487518778423
1.982804523112304
2.227609875353356
2.450581928375242
2.728560831260849
2.970948860821363
3.232571388881452
3.446340850526223
3.638513458839009
3.927762094812896
4.175309359688333
4.564689259747438
4.679199650181006

TABLE IV

Eigenvalues of the of SUSY x?y? Hamiltonian in [12] with potential with one flat
direction (15) for various dimension N of x and p matrices.

Eig.

Dimension of x and p matrix

N =40

N =284

N =90

©COTOUR WO (3

0.224412760874009
0.224412760875169
0.556922394071622
0.556922394074814
1.036071267537807
1.036071267538249
1.650992466645775
1.650992466647987
2.383991984538727
2.383991984539172
3.201460423287847
3.201460423291770
3.860339324000347
3.860339324002987
4.185160005257025
4.185160005257749
5.012290393530286
5.012290393531584
5.631283979631718
5.631283979633396

0.136136775321641
0.136136775333259
0.320636135507270
0.320636135520052
0.587757496466452
0.587757496481558
0.936461008004919
0.936461008022982
1.363349373730809
1.363349373736938
1.863562377306768
1.863562377307912
2.430044209505573
2.430044209524389
3.050457305236363
3.050457305236696
3.677817912548523
3.677817912552523
3.959824303413765
3.959824303421172

0.129894434282108
0.129894434287081
0.304192203244933
0.304192203271422
0.556436898019655
0.556436898042593
0.885987591458979
0.885987591460721
1.289969435717125
1.289969435727615
1.764241676624575
1.764241676645780
2.302940588334195
2.302940588347987
2.896473133160725
2.896473133185602
3.519191556602067
3.519191556619433
3.909691530520745
3.909691530529043
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Fig.6. Convergence of ground state eigenvalue for model Hamiltonian (17) with
potential without flat directions [12].
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Fig. 7. Comparison of convergence rates of four above mentioned models (bosonic
model 2%y?, supersymmetric models with both flat directions (superl), with one
flat direction (super2) and the toy model with a gap (super3) [12]) reported in
previous sections. Absolute error (Ey — Ep) is evaluated considering the reference
Ey calculated at dimension N = 80, whilst E corresponds to energy value at
particular dimension N.

Further inspection of convergence patterns are given in following figures
(Figs. 8 to 11). According to goodnesses of fits, the statement about nature
of ground energy state can be suggested. In a particular case, the distinc-
tion between discrete and continuous energy state is acquired by considering



FEigenvalues of Supersymmetric Quantum Matriz Models 1753

Data and Fits
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Fig.8. Tight dependence of bosonic z2y? model (6) ground state eigenvalue on
dimension N of p and = matrices on exponential trend indicates and confirms [§]
its discrete energy disposition. The convergence is reached at approx. N = 20.
The 1/\/N type fit with parameters a = 3.368F — 6 and ¢ = 1.1082 matches
up almost constant function. The first 10 cut-off eigenvalues are excluded from
fitting procedure as the values at dimension are the prime matter of concern. The
residuals for values of E(N) i.e. the differences E(N) — E(N)g are given in the
bottom subfigure.

suitable functional fit to calculated x and p matrices dimension dependent
energy values. The dependences of eingenvalues on cut-off of basis func-
tions involved in calculation have been demonstrated by [9, 17-19, 21]. As
far as the particular set of cut-off or (/N-dependent) energies resembles 1/N
or slower functional form (as in our case 1/4/(N)), the state belongs to
continuous energy spectrum. On the other hand, discrete energy spectrum
is spanned by states which convergence is of exp(—N) fast type. Whether
14/(N) type or 1/N type fit is selected relies on comparison of their goodness
(statistic measures how successful the fit is in description of the data varia-
tion in our cases R-square and root mean square error (RMSE) for particular
cases are considered. R-square and RMSE are also reported for exponential
fits in Figs. 8 to 11). The graphs of residuals of E values (E(N) — E(N)g)
are also attached as subfigures for detailed insight into the quality of fits.
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Data and Fits
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Fig.9. Ground state energy of supersymmetric extension of bosonic model (11)
(depicted as superl dots) belongs to continuous energy spectrum as manifested by
consistency of convergence with 1/(N) fit. The values of R-square = 0.9997 and
RMSE = 0.0004644 for 1/(N) fit compared to R-square = 0.9826 and RMSE =
0.002315 for exponential fit favour the linear inverse fit.

Data and Fits
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Fig. 10. Model with mass term embedded in one potential valley is characterized by
continuous spectrum comprising the interval [0, co]. Goodness of fits: Exponential
fit — R-square = 0.994; RMSE = 0.007412; 1/\ﬂN) fit — R-square = 0.9977;
RMSE = 0.004553.
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Data and Fits
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Fig. 11. Unlike the supersymmetric case in Fig. 9, the model with gap (15) exhibits
isolated energy state below the essential spectrum [1,00] E = 0.8142 [12]. Thus
no wonder, the exponential fit reflects convergence tendency more appropriately
compared to 1/N fit. Goodness of fits: Exponential fit — R-square = 0.9577;
RMSE = 0.00031; 1/N fit — R-square = 0.9081; RMSE = 0.004534.

4. Conclusion

We have tested the method of Korsch and Gliick [10] on several non-
trivial examples of supersymmetric quantum models. The ground and a
few excited states of them were determined and results are very accurate
and very easy to obtain. As can be seen from Matlab code in Appendix,
the realization of the method we have used, is very effective and gives the
possibility to calculate the non-pertubative effects, therefore the method can

be very useful in more realistic cases, including advanced topics of quantum
field theory.

This work was supported by VEGA grant 1/0871/14.

Appendix

The Matlab code for the calculation of the first 20 eigenvalues of su-
persymmetric (SUSY) Hamiltonian (14) can be found using the following
Matlab code:

format long
N =50; s =1;
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n=1:N -1;

m = sqrt(n);

xl = s/sqrt(2) * (diag(m,-1) + diag(m,1));
pl = i/s/sqrt(2) * (diag(m,-1) - diag(m,1));
x2 = s/sqrt(2) * (diag(m,-1) + diag(m,1));
p2 = i/s/sqrt(2) * (diag(m,-1) - diag(m,1));
Y=eye(N) ;

H1 = kron(pl1~2,Y);

H2 = kron(Y,p2-2);
P1 =1[01; 1 0];
P3 = [10; 0 -1];

P2 = [0 -i; i 0];

II = [10; 0 1];
INT=kron(x1l*xl, x2*x2);
INTT=kron (INT+H1+H2,II);
INT1= kron(x1,Y);
INT11=kron(INT1,P1);
INT2= kron(Y,x2);
INT22=kron(INT2,P2);
H=INTT-INT22+ INT11,;
[C,Eig] = eig(H);
EigSort = sort(eig(H));
EigSort(1:20)

Matlab code for the calculation of the first 20 eigenvalues of Hamiltonian
with potential (15) with only on flat direction [12]

format long

N =50; s = 1;

n=1:N -1;

m = sqrt(n);

x1 = s/sqrt(2) * (diag(m,-1) + diag(m,1));
pl = i/s/sqrt(2) * (diag(m,-1) - diag(m,1));
x2 = s/sqrt(2) * (diag(m,-1) + diag(m,1));
p2 = i/s/sqrt(2) * (diag(m,-1) - diag(m,1));
Y=eye(N) ;

H1 = kron(pl1~2,Y);

H2 = kron(Y,p2°2);

H3 = kron(Y,x2"2);
P1 = [0 1; 1 0];
P3 = [10; 0 -1];
P2 = [0 -i; 1 0];
II = [10; 0 1];
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INT=kron(x1*x1, x2*x2);
INTT=kron (INT+H1+H2+ H3,II);
INT1= kron(x1,Y);
INT11=kron(INT1,P1);

INT2= kron(Y,x2);

INT22=kron (INT2,P2) ;
H=INTT-INT22+ INT11;

[C,Eig] = eig(H);

EigSort = sort(eig(H));
EigSort(1:20)

Matlab code for the calculation of the first 20 eigenvalues of Hamiltonian
with potential (17) without any flat direction [12]

format long

N =50; s =1;

n=1:N -1;

m = sqrt(n);

x1 = s/sqrt(2) * (diag(m,-1) + diag(m,1));

pl = i/s/sqrt(2) * (diag(m,-1) - diag(m,1));
x2 = s/sqrt(2) * (diag(m,-1) + diag(m,1));
p2 = i/s/sqrt(2) * (diag(m,-1) - diag(m,1));

Y=eye (N) ;

H1 = kron(pl1~2,Y);
H2 = kron(Y,p2°2);
H3 = kron(Y,x272);
H4= kron(x1-2,Y);
H5= 2xkron(x172,x2);

P1 = [0 1; 1 0];
P3 = [1 0; 0 -1];
P2 = [0 -i; i 0];
IT = [1 0; 0 1];

INT=kron(x1*x1l, x2%x2);
INTT=kron (INT+H1+H2+ H3 +H4 + H5,II);
INT1= kron(x1,Y);
INT11=kron(INT1,P1);

INT2= kron(Y,x2);

INT3= kron(Y,Y);
INT22=kron (INT2+ INT3,P2);
H=INTT-INT22+ INT11;
eig(H);

EigSort = sort(eig(i));
EigSort(1:20)
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