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The one-dimensional attractive Hubbard model (U � 0) is discussed,
assuming periodic boundary conditions and the half-filling case. The con-
sidered chains have N nodes, the same number of electrons, where N − 1
of them have the same spin projection. The exact diagonalization was per-
formed for any number N of atoms. The eigenvectors and eigenvalues in
some cases are constructed based on the Golden Number.
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1. Introduction

The Hubbard model derived in [1], and independently by Gutzwiller [2, 3]
and Kanamori [4], is one of the simplest approximate models used for describ-
ing the main aspects of the fundamental many-body systems in condensed
matter physics, as an improvement on the tight-binding model, which in-
cludes only the hopping term. One such example is strongly correlated
quantum system of interacting electrons in narrow energy bands, where the
electrons occupying the atoms can move between them by hopping during
conduction. The Hubbard model produces both a metallic and an insulating
state, depending on the value of U . In spite of a substantial simplification
of the model compared to the real physical situation of interacting electrons
in a crystal, obtained results may explain the insulating, magnetic, and
even superconducting effects in a solid, including 1D conductors [5, 6]. The
Hubbard model has been applied to problems as diverse as ferromagnetism,
antiferromagnetism, the Mott transition, high-temperature superconductiv-
ity, the Bose–Einstein condensate in cold optical lattice [7–9]. The exact
solution of the Hubbard Hamiltonian exists only for one spatial dimension,
given in year 1968 by Lieb and Wu [10], by using the method of Yang [11],
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and [12] from the year after, and is not easy to analyse. In general, there
are several approximation techniques, among the others mean field theory,
various Green’s function decoupling schemes and functional methods. We
continue the work with one spatial dimension [13–15] which is of much im-
portance for its possible generalizations to higher dimensions, and as the
exactly solvable model [16, 17]. In addition, the one-dimensional case may
become more important due to its possible applications in intensively stud-
ied carbon nanotubes [18], one-dimensional organic superconductors [19], or
one-dimensional organic ferromagnet [20]. There is also possibility of mod-
elling the one-dimensional Hubbard model of fermionic quantum gas loaded
into an optical lattice [21], which is a promising candidate for quantum in-
formation processing. Ultracold atomic physics offers numerous possibilities
to study strongly correlated many-body systems in lower dimensions.

In a previous paper [15], we discussed translational and unitary symme-
tries of the one-dimensional attractive Hubbard model providing the exact
diagonalization of the Hamiltonian only for even N < 7 via various applica-
tions of the unitary group. In this article, we provide a thorough analysis of
the eigenproblem resulting in obtaining the general analytical formulas for
the eigenvalues and the eigenvectors, for any number N .

2. The symmetries of the system

The most simple way to get insight into the dynamics of a finite system
of interacting electrons occupying the one-dimensional chain consisting of
N atoms, provides the Hubbard Hamiltonian in the following form

Ĥ = t
∑
i∈2̃

∑
j∈Ñ

(
â†jiâj+1i + â†j+1iâji

)
+ U

∑
j∈Ñ

n̂j+n̂j− , (1)

where Ñ = {j = 1, 2, . . . , N} denotes the set of atoms of the chain, 2̃ = {i =
+,−}, n̂ji = â†jiâji, and finally â†ji , âji are the canonical Fermi operators,
that is creation and anihilation operators of electron of spin i, on the site j.
Electrons behave as waves in the first component of the Hamiltonian (1),
while they behave as particles in the second one with the assumption of the
occurrence of electron–electron interaction with the characteristic constant
interaction denoted by U [22]. In general, U can be any value, with U < 0
(U � 0 — the case presented in this article) and U > 0 (U � 0 [23, 24])
responsible for attraction and repulsion, respectively, while U = 0 stands for
no effect or plain gas of fermions.

The single-node space hj has the basis consisting of n vectors denoting
all possible occupations of one node, since we are dealing with fermions

dimhj = n = 4 , hj = lcC{±, ∅,+,−} , (2)
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where ∅ denotes the empty node, + and − stand for one-node spin projection
equal to 1

2 and −1
2 , respectively, ± denotes the double occupation of the one

node by two electrons with different spin projections, and lcCA stands for
the linear closure of a set A over the complex field C. The final Hilbert
space H of all quantum states of the system has the form

H =
N∏
j=1

⊗ hj , H =
2N∑
Ne=0

⊕ HNe , (3)

where HNe denotes the space with fixed number of electrons Ne. The initial,
orthonormal basis of the Hilbert space H consists of all linearly independent
vectors called electron configurations [25], defined by the following mapping

f : Ñ −→ 4̃ , 4̃ = {±, ∅,+,−} (4)
and constitute the N -sequences of the elements from the set 4̃

|f〉 = |f(1)f(2) . . . f(N)〉 = |i1i2 . . . iN 〉 , ij ∈ 4̃ , j ∈ Ñ (5)

with

4̃Ñ =
{
f : Ñ −→ 4̃

}
, (6)

H = lcC 4̃Ñ . (7)

The symmetries of the one-dimensional Hubbard model has been studied
by many researchers, starting from Lieb and Wu [10], Yang [11] and con-
tinued in, inter alia, Refs. [22, 26, 27], with the book of Essler et al. being
the eminent summary and supplement of their work [28]. Since the peri-
odic boundary condition are assumed, the Hamiltonian (1) has the obvious
translational symmetry (âN+1i = â1i), this mean that one-particle Hamilto-
nian of the form (1) is completely diagonalized by a Fourier transformation.
Apart from the cyclic symmetry, system reveals among others two indepen-
dent SU(2) symmetries [28, 29], that is SU(2)×SU(2), in spin and pseudospin
space [30]. This symmetry involves spin and charge degrees of freedom, thus,
one has two sets of generators, {Ŝz, Ŝ+, Ŝ−} and {Ĵz, Ĵ+, Ĵ−}, for spin and
charge, respectively. These generators can be written in the following forms

Ŝz = 1
2

∑
j∈Ñ

(
â†j+âj+ − â

†
j−âj−

)
, Ŝ+ = Ŝ†− =

∑
j∈Ñ

â†j+âj− , (8)

Ĵz = 1
2

∑
j∈Ñ

(
â†j+âj+ + â†j−âj− − 1

)
, Ĵ+ =

∑
j∈Ñ

(−1)j â†j+â
†
j− ,

Ĵ− =
∑
j∈Ñ

(−1)j âj+âj− (9)
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and the transfer between these two sets is known as the Shiba transformation
[10, 28, 31]. The eigenvalues of the operators Ŝz and Ĵz are labelled by M
and Jz, whereas the eigenvalues of the operators

Ŝ2 = 1
2

(
Ŝ+Ŝ− + Ŝ−Ŝ+

)
+ Ŝ2

z (10)

and
Ĵ2 = 1

2

(
Ĵ+Ĵ− + Ĵ−Ĵ+

)
+ Ĵ2

z (11)

are labelled by S(S + 1) and J(J + 1), respectively, due to the quantum
algebra of the angular momentum.

3. The exact results of the diagonalization

From now on, we confine our considerations only to the case of U � 0,
and to the half-filling magnetic rings with N nodes occupied by Ne = N
electrons, including N − 1 electrons with the same spin projection. The set
of electron configurations for U � 0 does not contain the elements with two
atoms singly occupied by opposite spin projection (unpaired spins). Since
the numbers of up- and down-spin electrons are separately conserved — the
matrix representation of the Hamiltonian (1) gets reduced to the sectors
characterized by elements of the subset

{(N − 1, 1), (1, N − 1)} (12)

of the Cartesian product N+ ×N−, where N+ and N− denotes the number
of electrons with the spin projection equal to 1

2 and −1
2 , respectively. We

proceed with the total magnetization M = N
2 − 1, and with the initial basis

given by set of the electron configurations. As we consider the case of U � 0
— the nodes with the “−” alone will never appear.

The first step in the process of exact diagonalization of the system Hamil-
tonian is application of the so-called basis of wavelets [32] i.e. a Fourier
transform on the orbits Of t of the translational symmetry group CN , as the
aftermath of the translational symmetry of the magnetic ring. Each orbit
Of t is marked by the initial electron configuration f t [15], i.e. the first elec-
tron configuration in the orbit Of t , with the most left positions of ± and ∅
within the first N/2 + 1 and (N + 1)/2 nodes for even and odd N , respec-
tively. For example, Table I constitutes the orbit Of t=2 of the translation
group C6 with the initial electron configuration given by the second column
of this table. The number t ∈ T denotes the distance between the elements
± and ∅ in the initial electron configuration f t, and is equal to the number
of singly occupied nodes between them plus 1, t is positive when ± is at the
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TABLE I

Oft=2 f t=2

| ±+ ∅+++〉 | ±+ ∅+++〉
|+±+ ∅++〉
|++±+ ∅+〉
|+++±+ ∅〉
| ∅+++±+〉
|+ ∅+++±〉

left of the ∅, and negative in the opposite case, that is the set of all t has
the form

T =

{
t = 1,−1, 2,−2, . . . , +N/2 for N even

±(N − 1)/2 for N odd

}
. (13)

The jth electron configuration of the orbit Of t is denoted by |fj , f t〉, with
|f1, f t〉 ≡ f t, and |fj , f t〉 = (cN )

jf t, where

cN =

(
i1 i2 i3 . . . iN
iN i1 i2 . . . iN−1

)
∈ CN . (14)

Each element of the basis of wavelets has the form [15]

|k, t〉 = 1√
N

∑
j∈Ñ

ei2πkj/N
∣∣fj , f t〉 , (15)

where the quasi-momentum k ∈ B, with

B =

{
k = 0,±1,±2, . . . , ±(N/2− 1), N/2 for N even

±(N − 1)/2 for N odd

}
. (16)

To get rid of the complex elements of the Hamiltonian, one can introduce
the local gauge field dependent on the quasi-momentum k and the absolute
value of t due to (13), by adding to the amplitude (15) the additional phase
as follows [15]

|k, t〉′ = 1√
N
eiπk|t|/N

∑
j∈Ñ

ei2πkj/N
∣∣fj , f t〉 . (17)

The next step in the exact diagonalization procedure of the Hamiltonian
is taking into account the SU(2) × I symmetry in the pseudo-spin space,
where I denotes the identity element of the group SU(2), since the singly
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occupied atoms have the same spin projection. The appropriate amplitude
constructed on the gauged basis of wavelets (17) has the following form [15]

|k, |t|, J〉 = 1√
2

∑
g∈(SU(2)×I)

Γ (g) g |k, t〉′ , (18)

where Jz = 0, Γ (g) marks the irreducible representation of the group SU(2)
[30], and the absolute value |t|, according to (13), is given as follows

|t| = 1, 2, . . . ,


N/2 for N even, k even and J = 1 ,

or for N even, k odd and J = 0 ,
(N − 2)/2 for N even, k odd and J = 1 ,

or for N even, k even and J = 0 ,
(N − 1)/2 for N odd .

(19)

The basis (18) is called pseudo-spin basis. The physical meaning of this
symmetry is the decoupling of the spin and charge degrees of freedom related
with the elementary excitations of the Luttinger liquid [33] called spinons
and holons, respectively. For example, the pseudo-spin states for |t| = 1
take the following forms

|k, |t| = 1, J = 0〉 = 1√
2

(
|k, t = 1〉′ − |k, t = −1〉′

)
(20)

and
|k, |t| = 1, J = 1〉 = 1√

2

(
|k, t = 1〉′ + |k, t = −1〉′

)
. (21)

The representation of the system Hamiltonian in the basis (18) takes the
form dependent on the parity of the number of electrons N (or nodes in the
considered half-filling case) and the parity of the quasi-momentum k.

At the very beginning, we present the case of any even N and any even k
— the representation of the Hamiltonian has the quasi-diagonal form with
two blocks for J = 1 and J = 0, respectively as follows
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U −a 0 0 0 0 · · · 0 0 0 0 0

−a U −a 0 0 0 · · · 0 0 0 0 0

0 −a U −a 0 0 · · · 0 0 0 0 0

0 0 −a U −a 0 · · · 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · 0 −a U −a 0

0 0 0 0 0 0 · · · 0 0 −a U −
√
2a

0 0 0 0 0 0 · · · 0 0 0 −
√
2a U


(22)

and



U −a 0 0 0 · · · 0 0 0 0 0

−a U −a 0 0 · · · 0 0 0 0 0

0 −a U −a 0 · · · 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 · · · 0 −a U −a 0

0 0 0 0 0 · · · 0 0 −a U −a

0 0 0 0 0 · · · 0 0 0 −a U


, (23)

where a = 2t cos
(
kπ
N

)
.

The energies given as the eigenvalues of the matrix (22) are given by the
formula

E = U + 2 cos

(
lπ

N

)
a, l ∈ {1, 3, 5, . . . , N − 1} . (24)

The eigenvectors of the matrix (22) have the form

|k, J, l〉=
√

4

N

[ N
2
−1∑
|t|=1

cos

((
N
2 − |t|

)
lπ

N

)
|k, |t|, J〉+cos

(π
4

)
|k, |t|=N/2, J〉

]
,

(25)
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with l ∈ {1, 3, 5, . . . , N − 1}. An exemplary eigenvector for N = 10, any
k ∈ {0,±2,±4}, J = 1, and l = 5 takes the form

|l = 5〉 =
√

4/10 [cos (20π/10) ||t| = 1〉+ cos (15π/10) |2〉
+cos (10π/10) |3〉+ cos (5π/10) |4〉+ cos (2π/8) |5〉] . (26)

The eigenvalues of the matrix (23) are given by the formula

E = U + 2 cos

(
lπ

N

)
a, l ∈ {2, 4, 6, . . . , N − 2} . (27)

The form of the eigenvectors of the matrix (23) is as follows

|k, J, l〉 =
√

4

N

N−2
2∑
|t|=1

cos

(
((l −N)|t|+N/2)π

N

)
|k, |t|, J〉 , (28)

with l ∈ {2, 4, . . . , N − 2}. An exemplary eigenvector for N = 14, any
k ∈ {0,±2,±4,±6}, J = 0, and l = 4 takes the form

|l = 4〉 =
√

4/14 [cos (−3π/14) ||t| = 1〉+ cos (−13π/14) |2〉+
+cos (−23π/14) |3〉+ cos (−33π/14) |4〉+ cos (−43π/14) |5〉
+cos (−53π/14) |6〉 . (29)

Next, we present the case of any even N and any odd k — the represen-
tation of the Hamiltonian has the quasi-diagonal form with two blocks for
J = 1 and J = 0, respectively. The first matrix is exactly the same as (23),
while the case for J = 0 provides



U 0 0 0 0 0 · · · 0 0 0 0 −
√
2a

0 U −a 0 0 0 · · · 0 0 0 0 0

0 −a U −a 0 0 · · · 0 0 0 0 0

0 0 −a U −a 0 · · · 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · 0 −a U −a 0

0 0 0 0 0 0 · · · 0 0 −a U −a

−
√
2a 0 0 0 0 0 · · · 0 0 0 −a U



.

(30)
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The eigenvalues of the matrix (30) have the following form

E = U + 2 cos

(
lπ

N

)
a, l = {1, 3, 5, . . . , N − 1} . (31)

The eigenvectors of the matrix (30) are given by (25) after cyclic shift to the
right as follows

|k, J, l〉 =

√
4

N

[
cos
(π
4

)
|k, |t| = 1, J〉

+

N
2∑
|t|=2

cos

((
l +
(
N
2 − |t|

)
l
)
π

N

)
|k, |t|, J〉

 , (32)

where l = {1, 3, 5 . . . , N − 1}. An exemplary eigenvector for N = 6, any
k ∈ {±1}, J = 0, and l = 3 takes the form

|l = 3〉 =
√

2/3 [cos (2π/8) ||t| = 1〉+ cos (6π/6) |2〉+ cos (3π/6) |3〉] .
(33)

The eigenvalues of the matrix (23) exhibits very interesting fact for the case
of N = 10 — they are built based on the Golden Number φ =

√
5+1
2 and

provide the following set

{φa+ U, (φ− 1) a+ U,−(φ− 1) a+ U,−φa+ U} . (34)

The appropriate eigenvectors are given by equations (28), and before nor-
malization can be presented in the form of rows of Table II for any k ∈
{0,±1,±2,±3,±4, 5} and J = 0. The Golden Number is closely related to
the Fibonacci sequence which is defined recursively by Fn = Fn−1+Fn−2 for
n ≥ 2 with the initial terms F0 = F1 = 1. Some new interesting properties
and applications of the Fibonacci sequence were studied in [34, 35].

TABLE II

||t| = 1〉 |2〉 |3〉 |4〉
|l = 2〉 −1 φ −φ 1
|l = 4〉 1 −(φ− 1) −(φ− 1) 1
|l = 6〉 −1 −(φ− 1) (φ− 1) 1
|l = 8〉 1 φ φ 1
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The representation of the system Hamiltonian for odd N has the general
form as follows

U −a 0 0 0 · · · 0 0 0 0 0

−a U −a 0 0 · · · 0 0 0 0 0

0 −a U −a 0 · · · 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 · · · 0 −a U −a 0

0 0 0 0 0 · · · 0 0 −a U −a

0 0 0 0 0 · · · 0 0 0 −a U ∓ a


. (35)

The last diagonal element is equal to U − a for even k and J = 1 or
odd k and J = 0. Other cases, that is for even k and J = 0 or odd k and
J = 1 provide the last diagonal element in the form U + a. The eigenvalues
and eigenvectors of the matrix (35) are given by the formulas

E = U + 2 cos

(
lπ

N

)
a (36)

and

|k, J, l〉 =
√

4

N

N−1
2∑
|t|=1

cos

(
(2(l −N)|t|+N)π

2N

)
|k, |t|, J〉 , (37)

where l ∈ {2, 4, 6, . . . , N−1} and l ∈ {1, 3, 5, . . . , N−2} for the last diagonal
element of the matrix (35) equal to U − a and U + a, respectively. An
exemplary eigenvector for N = 9, any k ∈ {0,±2}, J = 1, and l = 5 takes
the form

|l = 5〉 =
√

4/9 [cos (π/18) ||t| = 1〉+ cos (−7π/18) |2〉 (38)
+cos (−15π/18) |3〉+ cos (−23π/18) |4〉] . (39)

The eigenvalues and eigenvectors of the matrix (35) for N = 5 are built
based on the Golden Number by analogy to (34) due to (37).

4. Summary and conclusions

In the present paper, we gave a thorough analysis of the one-dimensional
attractive Hubbard model for the chains with N atoms, the same number of
electrons, andN−1 of them with the same spin projection. The translational
symmetry of the system provides the basis of wavelets, and appropriate
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gauge transformation removes the complex elements from the representation
of the Hamiltonian. The rotational symmetry within the spinless part of the
magnetic ring provides the quantum number J , whereas Jz, the total spin S
and the total magnetization M are fixed. We provide the general forms of
the representation of the system Hamiltonian in assumed translational and
unitary symmetry with respect to the parity of the total number of nodes N ,
and quasi-momentum k. Next, we derived the appropriate energies and
the eigenvalues. The eigenvalues for all cases are obtained by the formula
E = U + 2 cos( lπN )a, l ∈ Ñ , with even number l providing the energies for
the cases with even number k + J , and with odd number l providing the
energies for odd number k + J — for even number N , and contrariwise for
odd number N . The set {k, J, l} of quantum numbers provides all exact
solutions for the case of one-dimensional attractive Hubbard model for the
chains with N atoms, the same number of electrons, and N−1 of them with
the same spin projection. The eigenvalues and eigenvectors in some cases
are built based on the Golden Number φ =

√
5+1
2 .
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