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In this paper, we investigate the scalar, gauge and Kalb–Ramond field
localization on a one-scalar generated brane with nonstandard kinetic terms
coupled with gravity. We show that the massless zero mode of spin 0 scalar
field is localized on the brane with generalized dynamics, while the vector
gauge field is not localized. In order to circumvent this problem, we use a
functional of the scalar filed in the gauge field action to obtain vector gauge
field localization in this braneworld model. We also study the localization
of the Kalb–Ramond field via this procedure.
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1. Introduction

Extra dimension is an important subject in the realm of theoretical
physics that provides many creative ways to solve some problems in physics
such as e.g. hierarchy problem. Unlike the model of Arkani-Hamed et al. [1],
Randall and Sundrum (RS) proposed an alternative scenario [2] to solve the
hierarchy problem that does not require large extra dimensions. In the RS
model, the size of extra dimension, rc, is not determined by the dynamic of
the model. For this scenario to be relevant, it is necessary to find a mecha-
nism for generating a potential to stabilize the value of rc. This mechanism
which was proposed by Goldberger andWise (GW) [3] could stabilize the size
of extra dimension by a five-dimensional bulk scalar field with usual dynam-
ics allowed to interact with gravity. Recently, Bazeia et al. [4] have modified
the standard braneworld scenario with the inclusion of scalar fields with
nonstandard dynamics. They have developed the first-order formalism for
models with standard gravity but with the scalar fields having generalized
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dynamics. Other studies about braneworld models in higher dimensional
space-time, which are generally based on gravity coupled to one or several
scalars can be found in [5, 6].

The issue of localization of several fields and resonances in such branes
is an interesting subject, as their investigation can guide us to which kind of
brane structure is more acceptable phenomenologically. Generally, massless
scalar fields and graviton can be localized on brane of different types. In
the RS model, graviton and spin 0 field can be localized on a brane with
positive tension and spin 1/2 and 3/2 fields are localized on a brane with
negative tension, while the gauge field cannot be localized either on a brane
with positive tension or on a brane with negative tension [7, 8]. In order to
localize gauge field, the authors of [9] introduced an additional scalar field
called the dilaton which can be coupled to the kinetic term of gauge fields
and leads to the localization of gauge field. It was shown in Ref. [10] that
gauge field localization is obtained via kinetic terms induced by localized
fermions. Also in Ref. [11], the authors introduced a suitable function in
the higher dimensional gauge field action to achieve gauge field zero mode
localization on a thick brane generated by the coupling of a scalar field and
gravity. In recent years, many authors have investigated the localization of
gauge fields on branes of different types which can be found in Refs. [12–17].

The Kalb–Ramond (KR) field is an antisymmetric tensor field which was
first introduced in the string theory. However, the free KR field cannot be
localized on the brane in five-dimensional space-time [18]. But if the KR field
couples to a dilaton field [19] or with the background kink scalar field [20],
the localization of the KR field can be realized. More studies about tensor
gauge field localization can be found in [11, 21].

Furthermore, it is important whether the fermions could be localized
on the thick branes. By introducing the scalar–fermion coupling, fermions
have normalizable zero modes in higher dimensional space-time [22–24]. In
Ref. [24] the fermion localization has been considered on a thick brane con-
structed from one scalar field with nonstandard kinetic terms coupled to
gravity. The authors of [24] used the analytical expressions for small α
and investigated the contribution of this nonstandard kinetic terms to the
problem of fermion localization.

The plan of this paper is as follows. In Sec. 2 we briefly summarize the
braneworld model with generalized dynamics developed by Ref. [4]. In Sec. 3
we study the localization of scalar field on this brane. We give the analytical
expression for the scalar zero mode in the thin brane limit. In Sec. 4 we
discuss gauge field localization. The brane with generalized dynamics is not
capable of supporting the existence of a localized zero mode of the gauge
field on the brane. Following recent results in Ref. [11], we use a smearing
out function in the gauge field action to localize gauge field on this brane.
Finally, in Sec. 5 we conclude with the summary of our results.
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2. The braneworld models with generalized dynamics

The action of a bulk scalar field, φ, on the warped braneworld model
with nonstandard kinetic terms which has been described by Ref. [4] is

S =

∫
d5x
√
|g|
[
−1

4
R+ L(φ,X)

]
, (1)

where R is the five-dimensional scalar curvature and g ≡ Det(gMN ). The
Lagrangian density L(φ,X) = K(X)−V (φ), where K(X) and V (φ) are the
nonstandard kinetic term and the potential, respectively. In Ref. [4], the
authors have studied two specific forms for the nonstandard kinetic term,
K(X) = X + α|X|X and K(X) = −X2, where α is a real non-negative pa-
rameter which drives the model away from the standard case and X = − φ̇2

2 ,
where the dot is used to represent derivative with respect to y. The general
form of the warped metric for a five-dimensional space-time is given by

ds2 = gMNdx
MdxN = e2A(y)gµνdx

µdxν − dy2 , (2)

where M,N = 0, 1, 2, 3, 4 and e2A is the warp factor. Also gµν stands
for four-dimensional curved brane with signature (+,−,−,−, ) and µ, ν =
0, 1, 2, 3. We assume that the scalar field and the warp factor depend only on
the extra coordinate y. In this article, we choose the first model for K(X)
as K(X) = X + α|X|X [24]. With these assumptions, the action given by
Eq. (1) with the ansatz Eq. (2) leads to the following equations of motion
for the scalar field

φ̈+ 4Ȧφ̇− Vφ = −α
(

3φ̈+ 4φ̇Ȧ
)
φ̇2 , (3)

Ä+ 2Ȧ2 =
−1

3

(
1 +

α

2
φ̇2
)
φ̇2 − 2

3
V , (4)

Ȧ2 =
1

6

(
1 +

3

2
αφ̇2

)
φ̇2 − 1

3
V . (5)

Now, we apply the first order formalism to the braneworld scenario [25],
hence

Ȧ = −1

3
W (φ) , (6)

where the superpotential W (φ) is, in principle, an arbitrary function of the
field φ with the corresponding potential

V (φ) =
1

8
W 2
φ −

α

64
W 4
φ −

1

3
W 2 . (7)
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We consider the superpotential W (φ) of the form [6]

W (φ) = 3bc sin

(√
2

3b
φ

)
, (8)

where b and c are positive parameters that are related to the thickness of
the brane (c) and the anti-de Sitter curvature (bc). By using the above
superpotential, one can obtain [24]

A(y) = b ln[sech(cy)] +
3

4
αb2c2 tanh2(cy) , (9)

φ(y) =

√
3b

2
arcsin[tanh(cy)]− 3

√
6

4
αb

3
2 c2 tanh(cy)sech(cy) . (10)

3. Localization of scalar fields

In this section, we first study the localization of the zero mode for spin 0
scalar field on the braneworld models with nonstandard kinetic term as-
sumed to be K(X) = X + α|X|X. After that, we analyze the zero mode
of scalar field in the thin brane limit and we discuss the relevance of the
parameter α on the localization of zero mode of the scalar field.

3.1. Localized zero mode

Let us consider the action of a massless real scalar coupled to gravity

S0 =
1

2

∫
d5x
√
ggMN∂MΦ∂NΦ , (11)

from which the equation of motion can be derived

1
√
g
∂M

(√
ggMN∂NΦ

)
= 0 . (12)

If we decompose Φ as Φ(x; y) = ζ(x)χ(y) and demand ζ(x) to satisfy the
four-dimensional massive Klien–Gordon equation gµν∂µ∂νζ = −m2ζ, we can
get the following equation for the y dependence

4Ȧ
∂χ

∂y
+
∂2χ

∂2y
+m2e−2A(y)χ = 0 . (13)

The above equation is very similar to the equation for gravity localization
[2, 7]. For m2 = 0, we can obtain the zero-mass solution to this equation
which takes the form χ(y) = χ0, where χ0 is a constant. The condition for
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having a localized four-dimensional scalar field is that χ0 be normalizable.
We show that this constant mode is localized on the braneworld model driven
by a real scalar field with nonstandard dynamic. Substituting the zero mode
into the starting action Eq. (11), we get

1

2
χ2

0

+∞∫
−∞

dye2A(y)

∫
d4xgµν∂µζ∂νζ . (14)

In order to localize zero mode, the y dependent part of the above expression,
namely

I0 =

∞∫
−∞

sech2b(cy)e
3
4
αb2c2tanh2(cy)dy , (15)

should be finite. It is difficult to solve this integral analytically but noting
that since tanh2(cy) ≤ 1 for an arbitrary finite value of y, we can write

I0 <

∞∫
−∞

P (y)dy , (16)

where
P (y) = sech2b(cy)e

3
4
αb2c2 . (17)

It is obvious that for any positive b, the function P (y) is sharp on the core of
brane and exhibits a narrow bell-shape profile. Therefore, it is convergent in
the entire domain of the extra coordinate. Hence I0 is finite and scalar zero
mode localization can be achieved on the brane with generalized dynamics.
It is interesting to see how scalar field localization occurs on the thin brane
with nonstandard kinetic terms. Next, we study the zero mode localization
and the Kaluza–Klein states of the scalar field in the thin brane limit.

3.2. Scalar field localization in the thin brane limit

By analyzing exact solutions (9) and (10) in the thin brane limit (c→∞
and the product bc is held fixed), one can obtain [24]

φ(y) =

√
6b

4
πsgn(y) , (18)

A(y) = −bc|y|+ 3

4
αb2c2 , (19)

where the term 3
4αb

2c2 is the contribution of nonstandard kinetic term to
the brane model geometry. When α = 0, the function A(y) given by Eq. (19)
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reduces to the solution of RS model. The metric is given by Eq. (2), but it
is more convenient to change it to a conformally flat metric as

ds2 = e2A(y)
(
gµνdx

µdxν − dz2
)
, (20)

where the relation of the new coordinate z and y is dz = e−A(y)dy. By
considering the above conformally flat metric and using the transformation
χ = e

−3
2
A(y)χ̄, equation (13) can be rewritten as{

− d2

dz2
+ V (z)

}
χ̄ = m2χ̄ , (21)

where the potential V (z) is

V (z) = 3
2∂

2
zA(z) + 9

4(∂zA(z))2 . (22)

The potential depends only on the warp factor exponent A and has the same
form as the case of graviton. The asymptotical behavior of the potential
gives us information about the presence of gaps in the continuum spectrum.
In the thin brane limit, the relation between y and z is given by

γ|z| =
(
ebc|y| − 1

)
, (23)

where
γ = bce

3
4
αb2c2 . (24)

Hence the potential of Eq. (22) can be written as

V (z) =
15

4

γ2

(γ|z|+ 1)2
− 3δ(z)γ

γ|z|+ 1
. (25)

This potential is like the singular one found in the RS scenario [7]. We
can see V (z) tends to zero when |z| −→ ∞ and the shape of this potential
looks like a volcano. This means that the potential provides no mass gap to
separate the scalar zero mode from KK modes. In the thin brane limit, the
scalar zero-mode that is the solution of the Schrödinger-like equation with
m2 = 0 can be given by

χ̄0 =
e

9
8
αb2c2

(γ|z|+ 1)
3
2

, (26)

where χ̄0 is normalizable when the product bc is held fixed. The shape of
the zero mode for scalar field is plotted in Fig. 1. This figure shows that
as the value of α decreases, the zero-mode gets more and more localized on
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Fig. 1. The shape of the scalar field zero-mode χ̄0 for b = 2
3 , c = 1 and α = 0.01

(solid line), α = 0.5 (dashed line), α = 1 (dotted line).

the brane with generalized dynamic. Also the Schrödinger-like equation (21)
can be rewritten as(

−∂z + 3
2∂zA(z)

) (
∂z + 3

2∂zA(z)
)
χ̄ = m2χ̄ . (27)

This factorization directly shows that there are no normalizable modes with
negativem2, namely, there is no tachyonic scalar mode. Thus, the scalar zero
mode is the lowest mode in the spectrum. In addition to this massless mode,
the potential expressed by Eq. (25) has a continuum gapless spectrum of KK
modes with positive m2 > 0 that can be given in terms of Bessel functions,
which are similar to those obtained in [6, 7, 26].

4. Localization of gauge field

In this section, we investigate the zero mode of the vector gauge field on
the brane with nonstandard kinetic term. The action of U(1) vector field is
described by

S = −1

4

∫
d5x
√
ggMNgRSFMRFNS , (28)
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where the field strength tensor is given by FMN = ∂MAN − ∂NAM . From
this action, one can determine the equations of motion

1
√
g
∂M

(√
ggMNgRSFNS

)
= 0 . (29)

We assume that Aµ are Z2-even and that A4 is Z2-odd with respect to
the extra dimension y, which results in that A4 has no zero mode in the
effective 4-dimensional theory. Furthermore, in order to be consistent with
the gauge invariant equation

∫
dyA4 = 0, we choose our gauge condition, as

A4 = 0. Under these assumptions and by decomposing the vector field as
Aµ(x, y) = aµ(x)ρ(y), the ρ(y) satisfies the differential equation

2Ȧ
∂ρ(y)

∂y
+
∂2ρ(y)

∂2y
+m2e−2A(y)ρ(y) = 0 . (30)

It is easy to find that the equation above has a constant solution ρ(y) = ρ0

with m = 0. In order to see whether it is a normalizable one or not, we must
substitute this solution in the action Eq. (28) so that

S = −1

4
ρ2

0

+∞∫
−∞

dy

∫
d4xgµνgαβfµαfνβ , (31)

where we have used fµν = ∂µaν − ∂νaµ. Obviously, the suppressing warp
factor is now absent of the effective action and the integral is divergent
which shows that the vector field cannot be localized on the brane. Also we
have checked that other normalizable nontrivial solutions of the equation of
motion for the vector field do not exist. The result is the same as the RS
model case, i.e. the zero mode of the spin 1 vector field cannot be localized
either on a brane with positive tension or on a brane with negative tension
so the Dvali–Shifman mechanism [27] must be considered for the vector field
localization.

4.1. Using a smearing out function to localize gauge fields

Recently, the authors of [11] have proposed a model that leads to gauge
field zero mode localization on thick branes by means of an effective model
obtained via the introduction of a smearing out function in the higher-
dimensional gauge field action. Here, we use their model to investigate
gauge field zero-mode localization on the brane with generalized dynamic.
Consider a suitable function in the five-dimensional gauge field Lagrangian,
which leads to a normalizable zero mode after the dimensional reduction
such as proposed in Ref. [11]

S = −1

4

∫
d5x
√
gG(φ)gMNgRSFMRFNS , (32)
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where G(φ) is a smearing out function of the minimum energy solution,
which demonstrates the brane. From this action, the equation of motion is
given by

1
√
g
∂M

(√
gG(φ)gMNgRSFNS

)
= 0 . (33)

From this equation of motion and the conditions stated in the beginning of
this section for the vector field AM , one arrives at(

2Ȧ(y) +
Ġ(φ)

G(φ)

)
∂ρ(y)

∂y
+
∂2ρ(y)

∂2y
+m2e−2A(y)ρ(y) = 0 . (34)

For the zero mode of the gauge field, ρ(y) = ρ0 is a solution. Substituting
the zero mode into the action (32), we get

S = −1

4
ρ2

0

+∞∫
−∞

G(φ)dy

∫
d4xgµνgαβfµαfνβ . (35)

In order to localize gauge fields on the brane with nonstandard kinetic term,
one requires that G(φ) should be normalizable in the entire domain of the
extra coordinate. In order to obtain the function G(φ), we use the procedure
of Ref. [20]. By defining ρ(y) = e−pAρ̃(z), where p is a coupling constant
and using conformally flat metric, Eq. (34) can be rewritten as

∂2
z ρ̃(z) +

[
(1− 2p)∂zA+

∂zG

G

]
∂zρ̃(z)

+

[
−p∂2

zA+
(
p2 − p

)
(∂zA)2 − p∂zA

∂zG

G
+m2

]
ρ̃(z) = 0 . (36)

By discarding terms of first order in derivatives, we have

(1− 2p)∂zA+
∂zG

G
= 0 . (37)

From the above equation, we can obtain

G(z) = e(2p−1)A(z) , (38)

and by using the expressions ∂zA = eA(y)∂yA and ∂zG = eA(y)∂yG, we get

G(φ) = sechb(2p−1)(cy)e
3
4
αb2c2(2p−1)tanh2(cy) . (39)

For p > 1
2 , G(φ) = 1 on the core of the brane and G(φ)→ 0 when y → ±∞.

Hence,
∫ +∞
−∞ G(φ)dy is convergent for finite product of αb2c2 and p > 1

2
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which means that gauge fields zero mode ρ0 can be localized on the brane
with generalized dynamic. To investigate the massive modes of the gauge
fields, we substitute Eq. (38) into Eq. (36) and obtain a Schrödinger-like
equation given by {

− d2

dz2
+ V (z)

}
ρ̃(z) = m2ρ̃(z) , (40)

where the effective potentia V (z) is

V (z) = p
(
∂2
zA+ p(∂zA)2

)
. (41)

The equation above can be written in the form corresponding to supersym-
metric quantum mechanic as

(∂z + p∂zA(z))(∂z − p∂zA(z))ρ̃(z) = −m2ρ̃(z) . (42)

From this equation, we can exclude the existence of tachyonic modes in the
spectrum. We must consider asymptotic behavior of the potential V (z) to
investigate the existence of gaps in the spectrum. However, it is not possible
to obtain an analytical expression for the function A(z). This means that
the potential must be studied numerically. In the present paper, we are

Fig. 2. The shape of potential V (z) for b = 2
3 , c = 1, p = 1 and α = 0.01 (solid

line), α = 0.5 (dashed line), α = 1 (dotted line).



Scalar, Gauge and Kalb–Ramond Field Localization on a Brane . . . 1807

more interested in the influence of α, so we plot the shape of the potential
for various values of α in Fig. 2. From this figure we can see that V (z) is a
modified volcano potential with a single well for α = 0.1 and two wells for
α > 0.5 and the potentials have the same asymptotic behavior when z →∞.
Also, for α > 0.5 the minimum at z = 0 splits into two minima and the
distance between the two minima of V (z) increases with α. The parameters
b and p affect the depth of the potential and with the increasing of the p
and b, the potential well gets deeper. Also, the values of the two maxima
of the potential increase by increasing of p and b. Since V (z) → 0 when
z → ±∞, the potential for gauge fields provides no mass gap to separate
the zero mode from the excited KK modes. This means that the spectrum
of the vector gauge field consists of a bound zero mode and a series of the
continuous massive modes.

4.2. Localization of the Kalb–Ramond field

Here, we study the localization of the Kalb–Ramond field on the brane
with generalized dynamic. In Ref. [18], it was found that there is no localized
tensorial zero mode with the usual thick brane background without the
coupling between the background scalar and the gauge tensor field. So we
use the smearing out G(φ) function in the tensor gauge fields action to
localize KR zero mode field on the brane as done in [11]. Hence the action
of this field is

S = − 1

12

∫
d5x
√
gG(φ)HMNLH

MNL , (43)

where HMNL = ∂MBNL + ∂NBLM + ∂LBMN is the field strength for the
KR field andM,N,L = 0, 1, 2, 3, 4. From the action (43) and the metric (2),
the equation of motion for the KR field can be expressed as

e2AG(φ)∂µH
µηθ − ∂y

(
G(φ)Hyηθ

)
= 0 . (44)

With the gauge choice Bµy = 0, ∂µBµν = 0 and decomposing the field as
Bηθ = Σnh

ηθUn(y), we have

Ġ(φ)

G(φ)

∂Un(y)

∂y
+
∂2Un(y)

∂2y
+m2e−2A(y)Un(y) = 0 . (45)

It is obvious that U0 = constant is a zero mode solution for the KR field.
Now, let us substitute this constant solution into the effective action for the
tensor field (43) which leads directly to

S = − 1

12
U2

0

+∞∫
−∞

e−2AG(φ)dy

∫
d4xhµηθh

µηϑ . (46)
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The condition of having a localized KR field on the brane requires that the
part dependent on the extra dimension in the action above should be finite.
By considering the smearing out function G(φ) given by Eq. (39), we obtain∫

e−2AG(φ) =

∫
sech(2p−3)b(cy)e

3
4
αb2c2(2p−3)tanh2(cy)dy , (47)

which is convergent for finite product of αb2c2 and p > 3
2 . This means that

the localization of the zero mode for the KR field can be achieved. We
also find that for a specific coupling given by Eq. (39), the normalizable zero
modes of the vector and tensor gauge field can be localized on the brane with
nonstandard kinetic term under the condition p > 3

2 . In order to analyze
the Kaluza–Klein massive spectrum, we return to Eq. (45) with m 6= 0 and
transform it into a Schrödinger-like equation as{

− d2

dz2
+ V (z)

}
Ũ(z) = m2Ũ(z) , (48)

where we have used U(y) = e−ṕŨ(z) with ṕ = p − 1. Also the effective
potential V (z) is given by

V (z) = ṕ
(
∂2
zA+ ṕ(∂zA)2

)
. (49)

This potential is very similar to the one given in Eq. (41). Hence we can
conclude the V (z) is a volcano-like potential which provides no mass gap to
separate the KR zero mode from the excited KK modes. Also the equation
above can be written in the form corresponding to supersymmetric quantum
mechanic as

(∂z + ṕ∂zA(z)) (∂z − ṕ∂zA(z)) Ũ(z) = −m2Ũ(z) . (50)

From this equation, we can exclude the existence of tachyonic modes in the
spectrum.

5. Conclusions

In this paper, we investigated the localization of scalar and gauge field
on a thick brane with nonstandard kinetic terms L = K(X)− V (φ), where
K = X + α|X|X (type-I model in [4]). First, we showed that massless
spin 0 scalar fields can be localized on the brane. Next, we considered thin
brane limit and we found that as the value of α decreases the zero-mode
of the scalar field gets more and more localized on the brane with general-
ized dynamic. Furthermore, by considering thin brane limit, we find that
the potential of KK modes in the corresponding Schrödinger equation is a
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volcano-like potential which means the potential provides no mass gap to
separate the scalar zero mode from KK modes. We analyzed several aspects
of the localization properties of the vector and tensor gauge field on a brane
generated by one scalar field with generalized dynamic. In order to localize
the gauge fields, we applied a mechanism which is proposed in Ref. [11]. We
used a smearing out function as e(2p−1)A(z) in the gauge field Lagrangian
which simultaneously leads to vector and tensor gauge field zero mode local-
ization on the brane with nonstandard kinetic term under condition p > 3

2 .
Also, we find the massive spectrum of the KR and vector gauge field satis-
fies a Schrödinger-like equation. For both tensor and vector gauge field, the
effective potential is volcano-like which means the potential for the gauge
field provides no mass gap to separate the zero mode from the excited KK
modes. In this work, our choice for the braneworld model was type-I model
of Ref. [4]. It would be interesting to study the matter field localization on
the brane configuration which is type-II model of Ref. [4].

The authors would like to thank Dr. L.B. Castro for his valuable sug-
gestions.
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