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We present results that can be obtained with an algebraic version of
Bohr’s collective model with the aim to identify the limitations of the model
as much as it successes. A special focus is placed on the analysis of triax-
ial nuclei. The first, simple application of the algebraic collective model to
188,192Os is performed with the aim to identify, among the observed J = 0+

states, the best candidates for a β vibration. A conclusion of this analysis
is that beta bandheads in these nuclei are to be expected at a much higher
energy than the energy of the observed 02 states. This finding is in agree-
ment with the vibration-rotation model predictions and the predictions of
the symplectic model. A decisive role played by β and γ fluctuations for
a correct description of the amplitudes of the quasi-γ-band staggerings is
shown. In particular, it is revealed that β fluctuations act differently in the
axially symmetric and the triaxial regime.
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1. Introduction

The Bohr collective model (BM) [1] and its many extensions [2] serve
as a basic tool for understanding and description of collective degrees of
freedom in nuclei. Alternatively, the interacting boson model (IBM) [3] can
be used which capitalizes on its algebraic structure to provide an effective
and quick characterization of experimental data. The algebraic collective
model (ACM) [4], introduced as a computationally tractable version of the
BM restricted to rotational and quadrupole vibrational degrees of freedom,
is also characterized by a well defined algebraic structure (see Ref. [5] for
a review of this model) and as such it combines the advantages of both the
BM and the IBM. In fact, its algebraic structure makes collective model in
the ACM calculations a simple routine procedure. Many examples showing
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the diversity of the results obtainable with the ACM have been displayed
in detail in [4]. Their work did not aim at analyzing a particular set of
experimental data but rather at providing a general view of the results that
can be obtained.

On the other hand, a primary focus of this paper is to look at the capa-
bility of the ACM to provide a realistic description of deformed nuclei, both
in the axially symmetric and in the triaxial regime. As the experimental
quasi-γ-band staggerings in different isotopic chains have turned out to be a
very sensitive signature of the presence of diverse nuclear shapes, it is of in-
terest to investigate how their theoretical counterparts depend on the model
parameters. It is shown that they are especially sensitive to the degree of β
fluctuations and, more interestingly, that β fluctuations act in an opposite
way in the axially symmetric and in the triaxial regime.

As the first application of the ACM we have chosen to analyze 188,192Os.
The Os isotopes have been a subject of many theoretical and experimen-
tal studies that focused on a description of the structure of those complex
transitional nuclei. In particular, the presence of triaxial shapes and the
prolate-to-oblate transition in the Os isotopic chain made it an interesting
and challenging topic of study. The microscopic and semimicroscopic mod-
els [6–12] usually predict γ-soft or γ-unstable ground state intrinsic shapes
in the Os–Pt region. It implies that very shallow minima in the γ direc-
tion are to be expected. Moreover, Kumar [13] predicted that Os isotopes
are prolate up to A = 192 and then suddenly change to oblate for heavier
masses. Casten and Cizewski [14] deduced from the excitation spectra and
γ-decay systematics that the prolate-to-oblate transition happens almost
suddenly at A = 194 in the Os isotopes. Ground state potential energy
surfaces (PES) for the Os and Pt isotopes have been obtained using the
self-consistent Hartree–Fock–Bogoliubov (HFB) calculations based on a mi-
croscopic effective nucleon–nucleon interaction in Refs. [15, 16]. Study of
such energy surfaces as a function of the deformation parameters β and γ has
revealed that the Os isotopes possess a prolate shape with a flat potential
in γ for 186−192Os. The HFB analysis applied to several isotopes of Yb, Hf,
W, Os and Pt has confirmed that when the neutron number is increased the
ground-state shapes evolve from axially symmetric prolate shapes to axially
symmetric oblate shapes. It has also revealed the existence of a very shal-
low triaxial minimum for the transitional N ∼ 116 nuclei [17]. A triaxiality
in 188,190,192Os has been investigated within the liquid drop Hamiltonian
amended with a potential separable in β and γ coordinates in Ref. [18]. A
solution of the BM Hamiltonian for soft triaxial nuclei has been obtained in
Ref. [19] which employs a potential separable in β and γ and an application
to Os isotopes has been considered. A rigid triaxial rotor model was applied
to the description of E2 properties of 186,188,190,192Os in Ref. [20].
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The aim of the ACM analysis of 188,192Os is not so much to compete with
the existing theoretical calculations of Os isotopes but rather to examine the
data from a perspective of a simple model and to determine when it breaks
down. We will perform several fits of the spectrum of each nucleus in which
beta bandheads will be identified with one of the observed J = 0+ states.
The aim of such an analysis is to find which of those states would fit the
best properties expected for a β vibration. A significant conclusion that
arises from the analysis is that the real β bands in these nuclei, if they
exist, probably lie at a much higher energy than the energy of the observed
02 states. As we discuss below, this result is consistent with a symplectic
model prediction [21, 22] and with the experimental characterization of the
β vibration in deformed nuclei [23].

The ACM is briefly introduced in the next section. In the third section
the calculations are presented and in the discussion section we raise some
important questions that would deserve a further investigation.

2. ACM model calculations

The ACM, introduced as a computationally tractable version of the BM
[1] restricted to rotational and quadrupole vibrational degrees of freedom, is
characterized by a well defined algebraic structure. Unlike the conventional
U(5) ⊃ SO(5) ⊃ SO(3) dynamical subgroup chain used, for example, in the
Frankfurt program [24, 25], the ACM makes use of the subgroup chain

SU(1, 1)× SO(5) ⊃ U(1)× SO(3) ⊃ SO(2) (1)

to define basis wave functions as products of β wave functions and SO(5)
spherical harmonics. Several advantages result from this choice of dynamical
subgroup chain: (i) with the now available SO(5) Clebsch–Gordan coeffi-
cients [26, 27], and explicit expressions for SO(5) reduced matrix elements,
matrix elements of BM operators can be calculated analytically; (ii) by ap-
propriate choices of SU(1,1) modified oscillator representations, the β basis
wave functions range from those of the U(5) ⊃ SO(5) harmonic vibrational
model to those of the rigid-beta wave function of the SO(5)-invariant Wilets–
Jean model; and (iii) with these SU(1,1) representations, collective model
calculations converge an order of magnitude more rapidly for deformed nu-
clei than in U(5) ⊃ SO(5) bases. Thus, the ACM combines the advantages
of the BM and the IBM and makes collective model calculations a simple
routine procedure [4, 28–30].

In the ACM, fully converged calculations were performed in Ref. [4]
for a range of Hamiltonians to determine the extent to which experimental
data can be realistically described in terms of the BM. More importantly,
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they prepare the way for more general, but still solvable, algebraic collective
models that include intrinsic degrees of freedom as in the unified model of
Bohr and Mottelson [2, 31–34].

A detailed description of the ACM model can be found in Ref. [4].
A general purpose ACM Hamiltonian is given, for example, in the form

Ĥ(M,α, κ, χ) =
−∇2

2M
+

1

2
M
[
(1− 2α)β2 + αβ4

]
−χβ cos 3γ+κ cos2 3γ , (2)

where

∇2 =
1

β4
∂

∂β
β4

∂

∂β
+

1

β2
Λ̂ (3)

is the Laplacian on the 5-dimensional collective model space [5]. Such a
Hamiltonian, expressed in terms of the quadrupole deformation parameters
β and γ serves as a useful starting point for a description of a wide range
of nuclear collective spectra. A Hamiltonian of this form was used, for
example, to study the second-order phase transition of a model nucleus,
from a spherical to a deformed phase, with α as a control parameter [32].
For α = 0, the potential is that of a spherical harmonic oscillator, 1

2Mβ2,
while for α > 0.5 it has a minimum for a non-zero value of β, which increases
as α increases. Moreover, as the mass parameter M of the Hamiltonian (2)
increases, the kinetic energy decreases and the result is a decrease of the
vibrational β fluctuations of the model about its equilibrium deformation.
Thus, the value of the parameter α controls the β deformation of the model
and the parameter M controls its rigidity. By adjusting the parameters
α and M , a model with any equilibrium value of the β deformation and
any degree of rigidity may be constructed. In Ref. [4] it has been shown
that parameter values in the range 0 < α < 2.0 and 10 < M < 100 are
sufficient to describe the β deformations and rigidities of the observed nuclear
collective states.

The terms β2 and cos 3γ in Eq. (2) are defined in terms of the quadrupole
tensor operator Q̂ by

Q̂ · Q̂ = β2 ,
(
Q̂⊗ Q̂⊗ Q̂

)
0

= −
√

2

35
β3 cos 3γ . (4)

The last term in Hamiltonian (2), proportional to cos2 3γ, can induce
a triaxial minimum in the PES. A delicate competition between all the
three terms in the potential and the second and the third one, in particular,
will determine whether the potential energy minimum will remain axially
spherical (second term proportional to cos 3γ dominates) or will be driven
to a triaxial minimum by the last term.
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It should be noted that the prolate-to-oblate transition is obtained triv-
ially by changing the sign of the parameter χ and this sign change does
not produce any effect on the calculated spectra as the Hamiltonian (2) is
isospectral with regard to this sign transformation.

Several fits for each of the two nuclei are performed in which β bandheads
are identified with one of the observed J = 0+ levels. Thus, in each fit the
energy of the calculated J = 02 state should match as much as possible the
energy of a particular J = 0n state and, at the same time, the energies of the
ground band and the γ band are optimized. Moreover, we pay an attention
to a good reproduction of the γ-band staggerings which are known to be
characteristic of the standard structural limits. To minimize a deviation
of the experimental and calculated energy values, a least-square method
has been used in a suitable part of the multidimensional parameter space
defined above. The procedure was carried out in two steps. First, coarse-
grain fits were performed to narrow down the parameter space to a physically
meaningful subspace. In the second step, fine-grain fits were done with steps
∆M = 0.5, ∆α = 0.1, ∆χ = 0.1 and ∆κ = 0.1 to obtain final results.

3. Results

In this section, the results obtained with the ACM Hamiltonian (2) are
presented. First, in Figs. 1 (a)–(f) and 2 (a)–(c) fits of the energy levels
of 188Os and 192Os taken from Ref. [35] are shown in which the observed
J = 0n states are supposed to represent candidates for a β vibration.

A striking feature of the calculation is a large amount of the centrifugal
stretching present when the lowest J = 0n states are included in the fit. It is
manifested by the fact that the calculated energies of the ground band lev-
els fall increasingly below the experimental ones as the angular momentum
increases. In fact, a large centrifugal stretching is to be expected for small
values of the mass parameter M for which the β and γ bands appear in
the low-energy spectrum [4]. In the adiabatic approximation of the BM, the
centrifugal stretching is neglected on the assumption that the β and γ exci-
tations appear high in energy and thus decouple from the rotational motion.
The increasing E2 transition rates over the experimental values is another
evidence of the centrifugal stretching. This is traditionally understood as a
result of an increasing deformation β which implies an increase of the rota-
tional moment of inertia with increasing angular momentum. Interestingly,
deviations from the J(J+1) spectrum have been noted also within a β-rigid
calculation in Ref. [33], where the effect arises purely from the interaction of
the γ and the rotational degrees of freedom. Thus in the context of a calcu-
lation considered in this paper, in which the potential is not β rigid anymore,
those deviations must be interpreted as a result of a softness of the potential
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both in the β and γ direction. We observe that the centrigugal stretching
gradually diminishes with increasing energy of J = 0n states indicating that
β vibrations, if they exist, should be expected at higher excitation energies.
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Fig. 1. Experimental and calculated spectra of 188Os. In each figure, the J = 0n
state included in the fit is indicated. E2 transition rates are shown as percentages
of those for the 21 → 01 = 100 transitions. Experimental errors are indicated in
the parenthesis. In the case of asymmetric errors, they are shown as an upper and
a lower index of the corresponding transition.

The interband E2 transition rates are shown in Figs. 3 (a)–(f) for 188Os
and in Figs. 4 (a)–(c) for 192Os. Some of the γ → ground band transitions
in 188Os are less correctly described. We also observe that the E2 transition
rate from the 02 state to the 21 state is too strong in comparison with the
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Fig. 2. Experimental and calculated spectra of 192Os. In each figure, the J = 0n
state included in the fit is indicated. E2 transition rates are shown as percentages
of those for the 21 → 01 = 100 transitions. Experimental errors are indicated in
the parenthesis. In the case of asymmetric errors, they are shown as an upper and
a lower index of the corresponding transition.

experimental value. In the case of 192Os, all the interband transition rates
are well reproduced except the E2 transition rate from the 02 state to the 21
which is again too strong. However, we observe, that this particular tran-
sition in both nuclei decreases with increasing energy of the J = 0n states
included in the fits. It is instructive to see whether such a behavior is con-
sistent with predictions of the macroscopic liquid drop model from which β
and γ vibrations originate. Using experimentally determined deformation
parameters β0 and moments of inertia J0 various quantities can be calcu-
lated. One of them is the ratio R of the E2 transition rates for 0β → 21 and
2γ → 01 transitions for which we obtain [23]

R = 5y2
(1 + 2α)2

x2(1− 2α)2
, (5)

where α = 2
7

√
5
π β0, x =

√
3~2
J0Eγ

and y =
√

3~2
2J0Eβ

.
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Fig. 3. Known experimental interband transition rates (circles) and their calculated
counterparts (triangles) for 188Os are shown as percentages of the 21 → 01 = 100

transitions.
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Fig. 4. Known experimental interband transition rates (circles) and their calculated
counterparts (triangles) for 192Os are shown as percentages of the 21 → 01 = 100

transitions.

In the absence of serious mixing, this ratio gives a guideline as to what
to expect for a β vibration. Taking β0 = 0.192 [36] and ~2

2J0
= 25.83 keV

for 188Os and β0 = 0.155 [36] and ~2
2J0

= 34.33 keV for 192Os, we obtain the
macroscopic liquid drop model predictions (MLD) as shown in Figs. 5 (a)
and (b). Each MLD value in Fig. 5 has been obtained by replacing Eβ by
the energy of the J = 0n state included in the fit and by replacing Eγ by
the energy of the observed γ bandhead. By comparing the MLD predictions
with their ACM counterparts, it is clearly seen that the ACM values decrease
with increasing energy of J = 0n states and approach the respective MLD
estimates. In the case of 188Os, the best agreement between the MLD and
ACM values is reached for the J = 04 excited state at 1704 keV, for which
however, the centrifugal stretching present in the spectrum is still quite large.
In the case of 192Os, the best agreement is obtained for 04 excited state at
1924 keV for which the centrifugal stretching is very small. Thus this state
may be a good candidate for a β vibration in 192Os.

Another guideline as to which state may be a good candidate for a β vi-
bration is obtained by analyzing E0 transition rates. Wood et al. [37] have
given a detailed account of both experimental and theoretical E0 properties.
They have pointed out that the β vibration should give rise to enhanced
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Fig. 5. Ratios R of the 0β → 21 and the 2γ → 01 transitions obtained within the
ACM and the MLD model for (a) 188Os and (b) 192Os. The index n indicates
which of the J = 0n state has been included in the fit. See the text for details.

E0 transitions to the ground state due to the radial shape oscillations in β.
Such transitions from the levels J = 0n, n = 4, 5, 6 and 7 have, indeed,
been observed [38]. Thus, even though the ACM analysis is not conclusive
enough in the case of 188Os to pick out a single candidate for a β vibration,
the results clearly show that a β vibration, if it exists, should be looked for
at the energies exceeding 1700 keV.

Interestingly, the vibration-rotation model predicts the energy of the
β bandhead in 188Os at 1700 keV [39]. Also, in the symplectic model, the
lowest collective states are the renormalized SU(3) states which have no 02
excitations. Low-energy 02 excitations should then come from other repre-
sentations and have non-zero transitions to the ground state band due to
band (representation) mixing [21, 22]. The calculations within the quasi-
particle phonon model (QPM) [40] have also confirmed that the 0+2 states
in 188,190,192Os do not exhibit the typical properties of β-vibrational bands
[41]. The 0+ states turn out to be linear combinations of several QRPA 0+

phonons. Moreover, the 0+2 state contains a large two-phonon γγ component
which increases from 188Os to 190,192Os. This feature can also be linked to
the proximity of the γ-soft region.

Another interesting feature that arises from the calculations is that the
potential energy surfaces (PES) become increasingly γ-soft with increasing
energy of the J = 0n states as is seen in Figs. 6 and 7. This is in agreement
with other theoretical calculations discussed in the introduction that predict
γ-soft or γ-unstable ground state intrinsic shapes in the Os–Pt region. Thus,
the nuclei seem to resemble more closely the Wilets–Jean γ-independent
limit [42].



Algebraic Collective Model and Nuclear Structure Applications 1843

b)a)
b)a)

c)
d)

e) f)

(a) n = 2 (b) n = 3b)a)
b)a)

c)
d)

e) f)

(c) n = 4 (d) n = 5

b)a)
b)a)

c)
d)

e) f)
(e) n = 6 (f) n = 7

Fig. 6. Potential energy surfaces obtained for 188Os and the Hamiltonian parame-
ters as in Figs. 1 (a)–(f). The index n indicates which of the J = 0n state has been
included in the fit. The values of the deformation parameter γ are shown on the
y axis, while the x axis represents the deformation parameter β.

One undesirable feature of the calculations is a shift of the γ band as a
whole towards higher energies with increasing energy of the theoretical 02
state. This is also reflected by the values of σ2 =

∑
i(Eexp − Eth)2/N that
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Fig. 7. Potential energy surfaces obtained for 192Os and the Hamiltonian param-
eters as in Figs. 2 (a)–(c). The index n indicates which of the J = 0n state has
been included in the fit. The values of the deformation parameter γ are shown on
the y axis, while the x axis represents the deformation parameter β.

characterize the specific errors of the fits. N is the number of excited states.
The values of σ are shown in Tables I and II for 188Os and 192Os, respectively.
While in the axially symmetric regime the energy of the γ bandhead increases
with increasing β and γ rigidity of the potential, in the triaxial regime it
increases with increasing β rigidity and increasing γ softness of the potential.
Since the PES of both nuclei posses a triaxial minimum that becomes more
β rigid and more γ soft with increasing energy of the theoretical 02 state,
the energy of the γ bandheads is shifted towards higher energies.
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TABLE I

Values of σ (in MeV) characterizing the quantitative errors of the fitting procedure
for 188Os. The fits are marked by the J = 0n states included in the calculations.

188Os
0i 02 03 04 05 06 07

σi 0.192 0.176 0.172 0.184 0.188 0.235

TABLE II

Values of σ (in MeV) characterizing the quantitative errors of the fitting procedure
for 192Os. The fits are marked by the J = 0n states included in the calculations.

192Os
0i 02 03 04

σi 0.261 0.214 0.330

It is necessary to analyze more nuclei in this or other mass regions to see
whether this feature of the calculation persists in other cases and is thus a
weakness of the model employed or whether it is related to a more complex
structure of the analyzed states that cannot be satisfactorily described by
the present simple collective model.

It should be noted that a good description of the γ bands in the osmium
isotopes has been a challenge also for the related IBM. In [43] not only have
the γ bands systematically been shifted towards higher energies in some
cases by 100 or 200 keV, but, unlike the present ACM calculations, the
γ staggerings have not been correctly reproduced.

Another focus of this paper is an analysis of the experimental staggerings
and the conditions under which their realistic description can be obtained.
The experimental staggerings in different isotopic chains have revealed that
different staggering patterns are characteristic of the standard structural
analytical limits known in, for example, the IBM based models. One example
can be nuclei that represent the transition between vibrational and γ-soft
structures that show strong staggering with negative S(J) values at even-J
and positive S(J) values at odd-J spins. The heavy rare-earth nuclei known
to display an axially symmetric behavior show a similar staggering pattern
with a smaller overall magnitude [44].

The staggering patterns of the quasi-γ bands are typically displayed using
the quantity S(J) defined as follows [45]

S(J) =
(E(J)− E(J − 1))− (E(J − 1)− E(J − 2))

E(2+1 )
. (6)
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An irregular staggering pattern is observed for 188Os which is well re-
produced by all the calculations with parameters shown in Figs. 1 (a)–(f)
(see Fig. 8). The staggering pattern of 192Os is characteristic of a soft tri-
axial rotor with positive S(J) values at even-J and negative S(J) values at
odd-J spins (see Fig. 9). It should be noted that large positive values S(4)
correspond to a rigid triaxial rotor, while the small experimental value for
192Os reflects the softness of the potential in the γ direction. All sets of
calculations reproduce the staggering pattern correctly and the ACM values
of S(J) are very close to their experimental counterparts. It should be noted
that the staggering pattern of 192Os has also been analyzed within a β-rigid
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Fig. 8. Staggering patterns obtained for 188Os and the Hamiltonian parameters as
in Figs. 1 (a)–(f).
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IBM calculation in Ref. [46] and the overall magnitude of the calculated
staggering was much larger than the observed one. This comparison reveals
the importance of β fluctuations for a realistic description of the data.
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Fig. 9. Staggering patterns obtained for 192Os and the Hamiltonian parameters as
in Figs. 2 (a)–(c).

To demonstrate the role played by the β rigidity of the potential, we show
in Fig. 10 several staggering patterns obtained for 192Os. The Hamiltonian
parameters are the same as in Fig. 2 (c), only the mass parameterM changes
from one calculation to another. It can be clearly seen that larger parameters
M that correspond to more β-rigid potentials lead to larger magnitudes of
S(J), while with decreasing value of M the magnitude of S(J) decreases
and the staggering pattern eventually becomes the one characteristic of an
axially symmetric rotor.

To understand the mechanism by which this happens in the present
model, it is convenient to use unphysically small values of M as shown in
Fig. 11. A choice of such small values ofM does not influence the qualitative
conclusions but makes the changes of the PES better seen. We observe that
as the parameter M decreases, the potential flattens more and more in the
β direction as should be expected. At the same time, larger and larger
values of β become accessible to the wave functions and, as a consequence,
the importance of the term proportional to χ increases. This is the term
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Fig. 10. Dependence of the quasi-γ-band staggering on the mass parameter M . All
the calculations are obtained with the parameters α, χ and κ as in Fig. 2 (c) and
the values of the mass parameter M as indicated in the figure. The experimental
values S(J) for 192Os are included for comparison.

d) M=0.001c) M=0.005

b) M=0.01a) M=1
(a) M = 1 (b) M = 0.01
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Fig. 11. Dependence of the potential energy surface on the mass parameter M .
Calculations for (a) M = 1, (b) M = 0.01, (c) M = 0.005 and (d) M = 0.001 are
shown. The remaining parameters are fixed to α = 1.5, χ = 1 and κ = 3. The
values of the deformation parameter γ are shown on the y axis, while the x axis
represents the deformation parameter β.
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that drives the system towards an axially symmetric minimum. Indeed, we
observe that with decreasingM the triaxial minimum flattens and eventually
transforms into a whole region of competing γ values (as indicated by a thick
line in Fig. 11 (c)) thus decreasing the effective γ deformation. For even
smaller values of M , the absolute minimum of the potential will regain an
axial symmetry (Fig. 11 (d), indicated by an arrow). Thus, it is clearly seen
that increasing β fluctuations (decreasingM) acts against the triaxiality and
leads to a gradual decrease of the magnitude of the triaxial staggering of the
quasi-γ-band and changes it eventually into the one expected for an axially
symmetric nucleus. On the other hand, in the axially symmetric regime β
fluctuations act in an opposite way; increasing β fluctuations will produce
an increasing magnitude of the staggering pattern.

4. Discussion

The ACM enables one to carry out easy collective model calculations
for a diverse range of Hamiltonians and for essentially arbitrary values of β
and γ stiffness. A primary objective of analyzing data within a model is to
identify the model’s deficiencies and suggest ways in which it could be im-
proved. Obviously, this goal can only be achieved when many experimental
spectra for various ACM Hamiltonians are analyzed. This work represents
an attempt in this direction.

In an application to the Os isotopes, we have shown that a large amount
of centrifugal stretching is observed when the β and γ vibrational bands
appear in the low-energy domain. As pointed out by Rowe et al. [4], if this
result were shown to persist for all reasonable ACM Hamiltonians that corre-
spond to low-energy β or γ vibrational bands one would have to question the
adiabatic approximation of the BM which completely neglects such coupling
effects. In particular, it would be necessary to question the consistency of
the interpretation of the low-lying excited bands as β or γ vibrational bands
when the centrifugal stretching effects are observed to be small.

The absence of large centrifugal stretching effects in the experimental
spectrum is even more significant than their absence in the adiabatic ap-
proximation to the model. This may indicate that real β bands of the model
lie at a much higher energy. This conclusion is not only in agreement with a
prediction of the vibration-rotation model which does not expect the β band-
head to be low in energy but also with the symplectic model calculations.
In fact, in the absence of mixing of the valence SU(3) representations due to
pairing, spin–orbit and other non-collective interactions the effective shell-
model description of the low-lying collective states assigns different K = 0
bands to different SU(3) representations with no B(E2) transitions between
them.
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An analysis of experimental properties of the first excited 0+ states in-
deed shows that only few of the 0+2 states may be interpreted as β vibrations
[23]. Unlike the γ vibrations, the properties of the 0+2 states are more com-
plex and depend sensitively on the changing Fermi surface. Also in the IBM,
the 0+2 states are of a very different character than the β vibration [47]. In
particular, in the SU(3) limit the K = 0 and 2 bands of the (2N − 4, 2)
representation are degenerate and transitions to the ground state band are
forbidden. The QPM calculations that depend critically on the pairing part
of the Hamiltonian have also confirmed that most of the 0+2 states cannot be
regarded as β vibrations [48]. It is clear that more microscopic calculations
that include the pairing and more experimental data of all kinds are needed
before making any assignment.

From the perspective of the ACM and taking into account the available
experimental information, we may conclude that in the case of 188Os, a β
vibration should be looked for at energies around or above 1700 keV. In the
case of 192Os, the situation is much more conclusive. The 04 excited state
at 1924 keV stands out as the best candidate for a β vibration. To make a
definitive conclusion, more experimental information about this state would
be needed to verify the other properties expected to be satisfied by such a
state.

An undesirable feature of the ACM calculations is an increasing shift of
the whole γ band towards higher energies with increasing β stiffness of the
potential. This question will be investigated in more detail in forthcoming
ACM calculations.

We have also shown that a realistic description of quasi-γ-band stagger-
ing pattern requires a right amount of β fluctuations to be present in the
model. In fact, models that are too β-rigid cannot reproduce correctly mag-
nitudes of the quasi-γ-band staggering in the triaxial regime. Thus, while in
the axially symmetric case staggering amplitudes decrease with increasing β
rigidity of the model the opposite is true in the triaxial case. Similar conclu-
sions can be expected for the role played by γ fluctuations of the potential
in both regimes.
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