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Determination of accurate nuclear level densities is of crucial impor-
tance for a variety of nuclear physics aspects and its related technologies.
Therefore, there have been many theoretical and experimental efforts to
determine nuclear level densities for variety of nuclei. In this research, the
effects of changing structure and collective excitations on some deformed
nuclei with axial symmetry were studied using microscopic generalized su-
perfluid model (MGSFM) and experimental data. It was shown that the
experimental data can be reproduced by a level density formalism devel-
oped for nuclei with static deformation.
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1. Introduction

Nuclear level density (NLD) is one of the most interesting concepts in
nuclear physics with numerous applications such as basic research in nuclear
structure, nuclear medicine (radioisotopes production), statistical calcula-
tion of reactor physics, activation methods, transport theory, shielding, and
astrophysics. NLD is an important parameter in statistical analysis of nu-
clear reactions, in calculating cross section of reactions such as those involved
in the formation of compound nuclei and pre-equilibrium reactions, and cal-
culating the rate of gamma decay of highly excited nuclei. Besides, NLD
has a significant role in the statistical study of nuclei as many body systems
from which all thermodynamic quantities can be extracted. Estimating ther-
modynamic quantities such as entropy, temperature, and heat capacity as
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functions of excitation energy is one of the fundamental challenges in nuclear
physics. These thermodynamic quantities depend on statistical properties
of nuclear many-body systems. Determining NLD is the key point in esti-
mating these thermodynamic quantities [1, 2]. Numerous experimental and
theoretical models have been proposed for studying NLD and each has pros
and cons. Many of these models relate the excited levels only to intrinsic
excitation in which excitation energy is distributed between limited numbers
of nucleons. However, there is another kind of excitation, especially at low
energies, that cannot be justified by intrinsic excitation. These levels are
produced from total or partial distribution of energy on the whole system of
fermions. Collective excitations are generated by vibrational and rotational
motions. In the microscopic theory of interacting fermions, the formation of
rotational bonds influences the intrinsic level densities. Experimental data
on NLD are often obtained from counting discrete low levels. This method of
spectroscopy is limited to very low energies in which experimental resolution
is good enough for splitting the spectrum peaks. In slightly higher energies,
these peaks overlap and then go to the continuous spectrum. Therefore,
the experimental data based on low-lying levels are only complete up to a
specific energy (completeness) and after that, number of levels is underes-
timated. In such a situation, nuclear levels are only described using the
statistical approach and NLD function.

A new experimental method has been developed to enable extracting
NLD on a wide range of excitation energies [3, 4]. In this method, particle–γ
coincidences have been measured to obtain γ-ray spectra as a function of
excitation energy for a few nuclei and then NLDs for 162Dy, 166Er, 172Yb,
232Th and 238U nuclei are extracted [5, 6]. The ground states of these nuclei
are expected to be deformed. This is of interest to study the level density
of deformed nuclei and compare the results with the relevant experimental
values. The effects of deformation and collective rotational excitations for
these nuclei are considered in calculations using the mechanism of rotational
collective enhancements in microscopic theory of interacting fermions. Ac-
curacy of calculated results is then evaluated by comparing with the new
experimental data.

2. Microscopic theory of interacting fermions

NLD in microscopic models is calculated directly from a realistic aver-
age potential of single particle levels that include shell effects, deformation
and pairing. Pairing interaction is one of the most important residual in-
teractions which is considered in microscopic calculations through the BCS
theory. This model is the microscopic version of Generalized Super Fluid
Model (GSFM) in which a phase transition is occurred from superfluidity
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behavior at low energy toward a normal state at excited energy. For this
case, a mechanism is defined similar to the effective Hamiltonian for Cooper
pairs in the BCS theory. Therefore, the problem is reduced to the BCS
quasi-particle as non-interacting fermions. For this, the second quantization
formalism is applied [7–10]. There are many parameters in the Hamiltonian
that describe a system of interacting fermions [11]. Such a Hamiltonian
is transformed to a Hamiltonian of a system composed of non-interacting
quasi-particles with quasi-particle energy (E) which can be approximately
diagonal. The intrinsic state and level density are calculated with statistical
partition function as below

ωintr(Ex) =
eS(Ex)

(2π)3/2
√
detD

, (1)

ρintr(Ex) =
ωintr(Ex)√

2πσ2
, (2)

where S(Ex) = lnZ(β0, α0) + β0Ex − αp0Z − αn0N is the entropy of the
system and detD is a 3× 3 determinant of second order partial differentials
of partition function lnZ(β0, α0) versus β and αi in the saddle point. In
microscopic formalism, grand partition function is determined by realistic
single particle levels [7–10, 12]

lnZ(β, αi)=
∑
q=n,p

{
−β
∑
k

(
εkq − λq − Ekq

)
+
∑
k

ln
(
1 + e−βE

k
q

)
− β

∆2
q

Gq

}
,

(3)
where Ekq , λq, εkq , ∆q, Gq are quasi-particle energy, chemical potential, sin-
gle particle energy levels, pairing parameter and gap parameter for each
kind of particles (q = p, n), respectively. Other necessary thermodynamic
quantities, including entropy and detD can be obtained by this equation.
For nuclei with axial symmetry, intrinsic states are determined by quantum
number Ω that shows the projection of total intrinsic angular momentum
on the axial symmetry of nuclei. Projection of Ω for a determined intrinsic
state is obtained from combination of unpaired single particle excitations.
An intrinsic density state of a Ω with a normal distribution (Gaussian shape)
is estimated by

ωintr(Ex, Ω) =
ωtot
intr(Ex)√
2πσ2‖

exp

(
− Ω

2

2σ2‖

)
, (4)

where ωtot
intr(Ex) is intrinsic density state or total density of particle and σ2‖

is spin cut-off factor that explains width of spin distribution. In foregoing
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calculations, we will assume that each intrinsic state which is determined
by |Ω| has a rotational band that is constructed based on it. These bands
are a collection of levels with the same parity. If there are not many states
for which K 6= Ω, it can be assumed that K = Ω with K as the projection
of total angular momentum of I on the symmetry axis. Level density for a
special I is obtained by summing up all intrinsic states with |K| ≤ I

ρ(Ex, I) =
∑
K≤I

ωintr [Ex − Erot(K, I), Ω = K] . (5)

In Erot(K, I) which is rotational energy [12–14]

Erot(K, I) =


I(I+1)−K2

2σ2
⊥

+ K2

2σ2
‖

for e–e nuclei (axially symetric) ,
I(I+1)−K(K+1)

2σ2
‖

for large deformed odd–A nuclei .
(6)

If Erot(K, I) is negligible compared to total excitation energy, the above
equation can be shown as [7, 9]

ρ(Ex, I) =
1

2

I=K∑
K=−I

ωtot
intr(Ex)√
2πσ2‖(Ex)

e
− K2

2σ2‖(Ex) e
I(I+1)−K2

2σ2⊥(Ex) , (7)

ρdef(Ex) =
∑
I

ρ(Ex, I) (8)

in which ρdef(Ex) is total level density (by introducing the effect of collec-
tive rotational excitations). The spin cut-off parameter σ2 = 〈M2〉 repre-
sents the width of the angular momentum distribution of the level density.
σ2‖ designates the parallel spin cut-off parameter, obtained from the projec-
tion of the angular momentum of the single-particle states on the symmetry
axis. It can be calculated by using microscopic theory and a realistic scheme
of single particle levels as [7, 9]

σ2‖(Ex) =
1

2

∑
q=n,p

∑
k

Ωk2

q sech2

(
βEkq
2

)
(9)

in which q = p, n are neutrons and protons and β is inverse of tempera-
ture, T. Ekq =

√
(εkq − λq)2 +∆2

q is quasi-particle energy. Also, the spin cut-

off factor σ2 is related to = inertial moment of nuclei by σ2 = =T
~2 . Therefore,

one can use σ2‖(Ex) =
=‖T
~2 , in which =‖ is inertial moment around a parallel

axis with nuclei symmetry axis. Similarly, using the above equation σ2⊥(Ex)
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is related to an axis perpendicular to a nuclear symmetry axis. Since the
relation of inertial moment perpendicular to nuclear symmetry axis of a rigid
spherical shape is stated as =⊥ = =0(1 + β2/3), we can consider σ2⊥(Ex) as
σ2⊥(Ex) = σ2‖(Ex)[(1 + β2/3)/(1 − 2β2/3)] [15]. Here, this approximation
is only used to obtain σ2⊥(Ex) from σ2‖(Ex) and β2 deformation parameter.
Pairing correlations in the theory of BCS is considered in constant G esti-
mation. The BCS equation gap parameter ∆q and chemical potential λq are
determined as a function of pairing power, Gq by equations

Nq =
∑
k

[
1−

εkq − λq
Ekq

tanh

(
1

2
β0E

k
q

)]
, q = n, p , (10)

2

Gq
=
∑
k

1

Ekq
tanh

(
1

2
βEkq

)
(11)

in which Nq refers to the number of neutrons and protons. It must be
mentioned that the NLD for a special angular momentum is calculated by
Eq. (7). In this equation, state density is calculated by a realistic collection
of single particle level with grand partition function method for a system of
interacting fermions.

3. Phenomenological vibrational and rotational
collective enhancements

According to the hybrid Bohr and Mottelson model, each single particle
level can be the start of another vibrational or rotational band. Hence, the
level density is increased as compared to intrinsic models [12]. By using
adiabatic hypothesis in which intrinsic and accumulated excitations are as-
sumed to be independent of each other, it can be shown that accumulated
effects can be explained by multiplying rotational and vibrational collective
enhancement factors in intrinsic level density

ρcoll(Ex, J, π) = Krot(Ex)Kvib(Ex)ρint(Ex, J, π) . (12)

Since these accumulated levels are effective only in low energies, their effects
are vanished with increasing energy similar to shell effects. Therefore, these
factors must be balanced in high energies. To this end, we multiplied them
by damping factors.

4. Vibrational collective effects

Vibrational levels exist in all nuclei and follow Bose–Einstein statistics.
Therefore, they can be explained by using a Bosonian partition function
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without any limitation on the occupying numbers. In this method, by using
changes in entropy and excitation energies that result from the vibrational
modes (δS, δU) which are calculated base on the Bose gas model, these
factors can be estimated as [16, 17]

Kvib(T ) = exp(δS − δU/T ) , (13)

δS =
∑
i

(2λi + 1)[(1 + ni) ln(1 + ni)− ni lnni] , (14)

δU =
∑
i

(2λi + 1)ωini (15)

in which T =
√
U/a is a nuclear temperature. δU and δS are changes

in excitation energy and entropy, respectively. In addition, ωi, λi and ni
are energies, multipolarities and occupation numbers for vibrational excita-
tions in a determined temperature, respectively. The damping of vibrational
enhancements is estimated by defining occupying numbers with increasing
energy as

ni = exp

(
− γi
2ωi

)/
exp

(ωi
T

)
− 1 , (16)

where γi is the width of vibrational excitations

γi = 0.0075A1/3
(
ω2
i + (2πT )2

)
. (17)

Quadrupole and octupoles are the most important multipolarities in these
calculations (λi = 2, 3). The energies of phonons for quadrupole and oc-
tupole are estimated as

ω2 = 65A−5/6/(1 + 0.05δW ) , (18)
ω3 = 100A−5/6/(1 + 0.05δW ) . (19)

There are alternative approaches for estimation of the vibrational collec-
tive enhancement factor such as liquid drop model that gives Kvib(T ) =
exp(0.0555A2/3T 5/3) [18], but the Bose gas relationship is most commonly
used expression in nuclear reaction codes.

5. Rotational collective effects

As compared to vibrational excitations, rotational excitations have more
contribution to increasing accumulated level density of a nucleus (Kvib(T )∼3,
while Krot ∼ 10–100). Rotational excitations depend on the nucleus shape.
Except for the magic nuclei which are completely spherical at their ground
state, other nuclei are somehow distorted at their ground state. Hence, these
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factors can be used for most nuclei. Basically, Krot is considered equal to
vertical spin cut-off factor [15]. However, to introduce damping in rotational
enhancement with increasing energy, the following semi-empirical equation
can be used [19]

Krot =

(
σ2⊥ − 1

)
1 + exp

(
U−Uc
dc

) , (20)

Uc = 120β22A
1/3 , (21)

dc = 1400β22/A
2/3 . (22)

In order to estimate rotational enhancement factor from the microscopic
relationships, first microscopic intrinsic level density ρmic

intr(Ex) =
ωtot
intr(Ex)√
2πσ2
‖

and total level density ρmic
def (Ex) =

∑
I ρ(Ex, I) are calculated. Then, since

ρdef = Krotρint, microscopic rotational enhancement factor is obtained as

Kmic
rot =

ρmic
def

ρmic
intr

. (23)

For taking into account the damping of this rotational enhancement with in-
creasing energy, Eq. (20) can be used again exept that Krot = σ2⊥ is replaced
by Kmic

rot . Than,

Kmic
rot,damp =

(
Kmic

rot − 1
)

1 + exp
(
U−Uc
dc

) . (24)

In addition, in this microscopic model it is possible to adjust the results
with experimental low level data by using the following equation and its two
empirically adjustable parameters, (c, p) [20]

ρrenorm(Ex, J, π) = exp
[
c
√
Ex

]
ρmic (Ex − p, J, π) . (25)

Using this approach, microscopic model will be flexible with accessible ex-
perimental data. Also, for pairing constants, functional equation is used
[21–23]

Gz =
2.0

Z0.7
, GN =

2.25

N0.7
. (26)

6. Results and discussion

In this research, low level experimental data of nucleus were used for
adjusting this model. It should be noted that these levels are complete
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below certain excitation energy. Afterward, because of the missed levels,
level densities are underestimated. Figure 1 compares the obtained results
from these methods for vibrational and rotational enhancement factors of
166Er nucleus.

Fig. 1. Comparison of phenomenological and microscopic methods for vibrational
and rotational enhancement factors of nucleus.

These results show a good agreement between two methods of calculating
rotational enhancements. In this study, the NLDs were extracted using
experimental data of the Oslo group for several nuclei which are expected
to have large static deformation in their ground state [6, 24–27]. This was
carried out by using the microscopic formalism and phenomenological study
for calculating the effects of deformation and collective excitations and the
estimated NLDs were then compared with the experimental results. The
results are shown in Fig. 2.

The results are in good agreement with the new experimental data for
various deformation parameters β2 for each nucleus. In the microscopic
theory, these deformations mainly depend on the shell configuration. The
deformations shown in the figures are in good agreement with the reported
results [29]. To estimate the effect of nucleus deformation on the NLD, the
microscopic calculations were performed assuming spherical shape for nuclei.
Therefore, both microscopic and phenomenological methods can be used for
introducing the rotational collective effects in calculating NLDs for nuclei
with static prolate deformation. The results of these calculations have a
significant impact on the prediction of many reactions particularly the ones
in the fission decay channel.
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Fig. 2. Comparison of microscopic generalized superfluid model calculations con-
sidering deformation effects with experimental data of the Oslo group [6, 24–27]
and experimental low-lying levels [28].
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