STUDY OF THE $K_{\rm S}K_{\rm L} \rightarrow \pi \ell \nu 3\pi^0$ PROCESS FOR TIME REVERSAL SYMMETRY TEST AT KLOE-2*

ALEKSANDER GAJOS

on behalf of the KLOE-2 Collaboration

The Marian Smoluchowski Institute of Physics, Jagiellonian University Łojasiewicza 11, 30-348 Kraków, Poland aleksander.gajos@uj.edu.pl

(Received October 24, 2014)

This work presents prospects for conducting a novel direct test of timereversal symmetry at the KLOE-2 experiment. Quantum entanglement of neutral K meson pairs uniquely available at KLOE-2 allows to probe directly the time-reversal symmetry (\mathcal{T}) independently of \mathcal{CP} violation. This is achieved by a comparison of probabilities for a transition between flavour and \mathcal{CP} -definite states and its inverse obtained through exchange of initial and final states. As such, a test requires the reconstruction of the $K_{\rm L} \to 3\pi^0$ decay accompanied by $K_{\rm S} \to \pi^{\pm} \ell^{\mp} \nu$ with good timing information, a new reconstruction method for this process is also presented which is capable of reconstructing the $K_{\rm L} \to 3\pi^0$ decay with decay time resolution of $\mathcal{O}(1\tau_{\rm S})$.

DOI:10.5506/APhysPolB.46.13 PACS numbers: 14.40.Df, 24.80.+y

1. Introduction

Well known for CP-violating phenomena, neutral kaons may also be used to study directly the time-reversal symmetry although special care is necessary to prepare a \mathcal{T} symmetry test which should be independent of CP-violation effects. Such a test is possible with entangled neutral kaon pairs uniquely available at the DA Φ NE ϕ -factory [1]. Kaon transitions between flavourdefinite and CP-definite states constitute processes for whom an exchange of initial and final state only corresponds to the time-reversal operation and not CP nor $CP\mathcal{T}$ conjugation. This allows for a direct test by comparison of amplitudes for a transition and its inverse independently of CP and $CP\mathcal{T}$. A similar principle was recently used by the BaBar experiment to observe \mathcal{T} -violation in the neutral *B*-meson system [2, 3]. In turn, KLOE-2 is capable of investigating time-reversal violation with neutral kaons.

^{*} Funded by SCOAP³ under Creative Commons License, CC-BY 3.0.

A. Gajos

2. The direct \mathcal{T} symmetry test

The entangled states of a pair of neutral K mesons produced in the ϕ -meson decay may be expressed in any suitable basis of orthogonal states such as flavour-definite states $\{K^0, \bar{K}^0\}$ or \mathcal{CP} -definite states $\{K_+, K_-\}$

$$|\phi\rangle \to \frac{1}{\sqrt{2}} \left(\left| K^0 \right\rangle \left| \bar{K}^0 \right\rangle - \left| \bar{K}^0 \right\rangle \left| K^0 \right\rangle \right) = \frac{1}{\sqrt{2}} \left(\left| K_+ \right\rangle \left| K_- \right\rangle - \left| K_- \right\rangle \left| K_+ \right\rangle \right) .$$
(1)

Kaons can be identified in these bases through final state observation at the moment of their decay. If the $\Delta S = \Delta Q$ rule is assumed¹, the semileptonic decays with a positively and negatively charged leptons (later denoted as ℓ^+, ℓ^-) unambiguously tag the decaying state as K^0 and \bar{K}^0 . Meanwhile, hadronic decay modes with two and three pions $(3\pi^0)^2$ are only possible for \mathcal{CP} eigenstates K_+ (CP = 1) and K_- (CP = -1), respectively. Observation of a transition between \mathcal{CP} and flavour-definite states also requires identification of kaon state at a point before its decay. This is uniquely possible with entangled neutral kaon pairs, as recognition of the state of the first decaying kaon guarantees its still-living partner to be in the orthogonal state at the moment of the first decay. Therefore, it is possible to obtain the transitions listed in Table I along with their time inverses. It is worth stressing that these transitions are connected with their \mathcal{T} -inverses only by time-reversal conjugation and not by \mathcal{CP} nor \mathcal{CPT} transformations. For each of the transitions from Table I, a measurement of the ratio of timedependent probabilities of a transition and its inverse constitutes a test of \mathcal{T} symmetry. At KLOE-2 [5], statistically significant tests are expected for transitions 2 and 4. The theoretical ratios R_2 and R_4 can be experimentally obtained from measurable ratios of double decay rates to which they are

TABLE I

Transitions between flavour and CP-definite states of neutral kaons. For each transition, a time-ordered pair of final states indicating the decays of respective states is provided in parentheses.

	Transition		$\mathcal{T} ext{-conjugate}$	
$\frac{2}{3}$	$\begin{array}{c} K^0 \rightarrow K_+ \\ K^0 \rightarrow K \\ \bar{K}^0 \rightarrow K_+ \\ \bar{K}^0 \rightarrow K \end{array}$	$\begin{array}{c} (\ell^{-}, \pi\pi) \\ (\ell^{-}, 3\pi^{0}) \\ (\ell^{+}, \pi\pi) \\ (\ell^{+}, 3\pi^{0}) \end{array}$	$ \begin{array}{c} K_+ \rightarrow K^0 \\ K \rightarrow K^0 \\ K_+ \rightarrow \bar{K}^0 \\ K \rightarrow \bar{K}^0 \end{array} $	$\begin{array}{c} (3\pi^{0},\ell^{+}) \\ (\pi\pi,\ell^{+}) \\ (3\pi^{0},\ell^{-}) \\ (\pi\pi,\ell^{-}) \end{array}$

¹ The $\Delta S = \Delta Q$ rule is well tested in semileptonic kaon decays [4].

² Only $3\pi^0$ is a pure CP = -1 state.

proportional up to a constant:

$$R_{2}(\Delta t) = \frac{P\left[K^{0}(0) \to K_{-}(\Delta t)\right]}{P\left[K_{-}(0) \to K^{0}(\Delta t)\right]} \sim \frac{I\left(\ell^{-}, 3\pi^{0}; \Delta t\right)}{I\left(\pi\pi, \ell^{+}; \Delta t\right)},$$
(2)

$$R_4(\Delta t) = \frac{P\left[\bar{K}^0(0) \to K_-(\Delta t)\right]}{P\left[K_-(0) \to \bar{K}^0(\Delta t)\right]} \sim \frac{I\left(\ell^+, 3\pi^0; \Delta t\right)}{I\left(\pi\pi, \ell^-; \Delta t\right)},\tag{3}$$

where Δt is the difference of proper decay times of the two kaons. Any discrepancy of the R_2 and R_4 ratios from unity would be a direct signal of \mathcal{T} symmetry violation. At KLOE-2, the asymptotic behaviour of these ratios can be measured (see Fig. 1) in order to extract the \mathcal{T} -violating $\operatorname{Re}(\epsilon)$ parameter as the theoretical prediction for large time differences is $R_2(\Delta t) \xrightarrow{\Delta t \gg \tau_{\mathrm{S}}} 1 - 4 \operatorname{Re}(\epsilon)$ and $R_4(\Delta t) \xrightarrow{\Delta t \gg \tau_{\mathrm{S}}} 1 + 4 \operatorname{Re}(\epsilon)$.

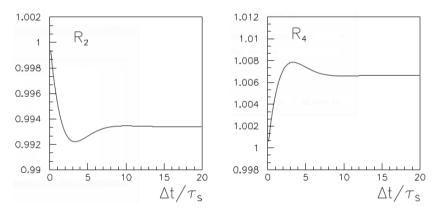


Fig. 1. Expected behaviour of the transition probability ratios R_2 and R_4 as a function of proper decay times difference Δt as simulated for 10 fb⁻¹ of KLOE-2 data. Figure adapted from [1].

3. Experimental realization at KLOE-2 and DA Φ NE

The DA Φ NE ϕ -factory is an electron-positron collider operating at the energy of the ϕ resonance peak ($\sqrt{s} \approx 1020$ MeV) and predominantly producing ϕ mesons with small momentum ($\beta_{\phi} \approx 0.015$) whose decays provide pairs of charged or neutral kaons with branching fractions of about 49% and 34%, respectively. Kaon decays are recorded by the KLOE detector consisting of a cylindrical drift chamber (DC) surrounded by a sampling electromagnetic calorimeter (EMC). In the recent upgrade to KLOE-2, the region close to interaction point was filled with a novel cylindrical triple-GEM inner tracker (IT) to improve vertexing [6].

A. Gajos

As shown in the previous section, a direct test of \mathcal{T} symmetry at KLOE-2 requires ability to reconstruct two types of events: $K_{\rm S}K_{\rm L} \rightarrow \ell^{\pm}\pi^{\mp}\nu \, 3\pi^0$ and $K_{\rm S}K_{\rm L} \rightarrow \pi\pi \, \ell^{\pm}\pi^{\mp}\nu$. For construction of time-dependent decay distributions, kaon proper decay times should be determined with resolution of the order of 1 $\tau_{\rm S}$. In the case of $\pi^{+}\pi^{-}$ (chosen as the $\pi\pi$ state) and semileptonic final states, charged particle tracks provide good vertexing (and thus timing) information. The $K_{\rm L} \rightarrow 3\pi^0 \rightarrow 6\gamma$ decay, however, is a challenging reconstruction task as only neutral particles are involved and the only recorded information on this process are the γ hits in the EMC. For this decay, a new reconstruction method was prepared for KLOE-2.

4. $K_{\rm L} \rightarrow 3\pi^0$ decay reconstruction

The new reconstruction procedure uses only information on up to 6γ hits in the KLOE-2 EMC in order to reconstruct both spatial location and time of the $K_{\rm L} \rightarrow 3\pi^0 \rightarrow 6\gamma$ decay. For each of the photons, EMC provides information on the hit point and time (Fig. 2, left). Therefore, a set of possible origin points of the incident γ is a sphere centered at the EMC hit position with a radius dependent on the time of the $K_{\rm L}$ decay t. Such spheres for each available EMC γ hit constitute a system of equations

$$(T_i - t)^2 c^2 = (X_i - x)^2 + (Y_i - y)^2 + (Z_i - z)^2, \qquad i = 1, \dots, 6.$$
(4)

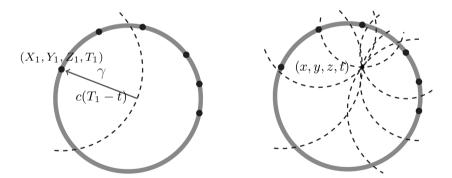


Fig. 2. Scheme of the $K_{\rm L} \to 3\pi^0 \to 6\gamma$ decay vertex reconstruction in cross section view of the KLOE EMC (grey ring).

As the $K_{\rm L}$ decay vertex is the common origin of all photons, it can be found as an intersection of all spheres defined above by solving the system of equations for x, y, z and t (Fig. 2, right). Although only 4 γ hits are necessary to solve the system, recording all 6 photons allows to improve the decay vertex resolution by numerical best satisfaction of the overdetermined system.

Performance of reconstruction was tested on a sample of MC-generated $K_{\rm L} \rightarrow 3\pi^0$ events. Resolution of proper $K_{\rm L}$ decay time was estimated for several regions of the decay vertex distance from the interaction point. Figure 3 shows the resulting resolution which is at the level of ~ 2 $\tau_{\rm S}$ and remains constant with increasing $K_{\rm L}$ travelled path lengths in the whole range available in the detector. This temporal resolution is sufficient for the future \mathcal{T} symmetry test at KLOE-2.

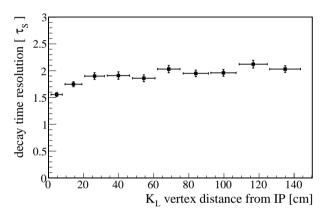


Fig. 3. Resolution of proper $K_{\rm L}$ decay time reconstructed for $K_{\rm L} \rightarrow 3\pi^0$ with the new method as a function of the decay vertex distance from the ϕ -decay point (IP).

This work was supported in part by the EU Integrated Infrastructure Initiative Hadron Physics Project under contract number RII3-CT-2004-506078; by the European Commission under the 7th Framework Programme through the *Research Infrastructures* action of the *Capacities* Programme, Call: FP7-INFRASTRUCTURES-2008-1, Grant Agreement No. 227431; by the Polish National Science Centre through the Grants No. 0469/B/H03/ 2009/37, 0309/B/H03/2011/40, 2011/03/N/ST2/02641, 2011/01/D/ST2/ 00748, 2011/03/N/ST2/02652, 2013/08/M/ST2/00323 and by the Foundation for Polish Science through the MPD programme and the project HOM-ING PLUS BIS/2011-4/3.

A. Gajos

REFERENCES

- J. Bernabeu, A. Di Domenico, P. Villanueva-Perez, Nucl. Phys. B868, 102 (2013).
- [2] J. Bernabeu, F. Martinez-Vidal, P. Villanueva-Perez, J. High Energy Phys. 1208, 064 (2012).
- [3] J.P. Lees et al. [BaBar Collab.], Phys. Rev. Lett. 109, 211801 (2012).
- [4] J. Beringer et al. [Particle Data Group], Phys. Rev. D86, 010001 (2012).
- [5] G. Amelino-Camelia et al., Eur. Phys. J. C68, 619 (2010).
- [6] A. Balla et al., Nucl. Instrum. Methods A732, 221 (2013).