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The measurement of the σ(e+e− → π+π−) cross section allows to deter-
mine the pion form factor |Fπ|2 and the two-pion contribution to the muon
anomaly aµ. Such a measurement has been performed with the KLOE de-
tector at DAΦNE, the Frascati φ-factory. The preliminary results on the
combination of the last analysis (KLOE12) with two previous published
(KLOE08, KLOE10) will be presented in the following.
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1. Introduction

The anomalous magnetic moment of the muon defined as aµ ≡ gµ−2
2 ,

can be accurately measured and, within the SM framework, precisely pre-
dicted [1]. The experimental value of aµ ((11659208.9± 6.3)× 10−10) mea-
sured at the Brookhaven Laboratory differs from the SM estimates by 3.2–
3.6σ [2]. If the deviation is confirmed with higher precision, it would signal
of new physics.

The main theoretical uncertainty for aµ comes from hadronic contribu-
tions. The leading order hadronic term can be derived from a combination
of experimental cross section data, related to e+e− annihilation to hadrons.

At DAΦNE, the differential cross section (as a function of mππ) for the
e+e− → π+π−γ initial state radiation (ISR) process is measured. Then, the
dipion cross section σππ ≡ σ(e+e− → π+π−) has been obtained from

s
dσ(π+π−γ)

dsπ

∣∣∣∣
ISR

= σππ(sπ)H(sπ, s) , (1)
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where the radiator function H is computed from QED with complete NLO
corrections and depends on the initial e+e− center-of-mass energy squared s.
The dipion cross section σππ obtained from Eq. (1) requires the correction for
final state radiation (FSR). Equation (1) is also valid for the e+e− → µ+µ−γ
and e+e− → µ+µ− processes with the same radiator function H. Thus, we
can determine σππ from the ratio of the π+π−γ and µ+µ−γ differential cross
sections for the same value of the dipion and dimuon invariant mass.

The pion form factor can then be determined using the following equation∣∣Fπ (s′)∣∣2 =
3

π

s′

α2β3π
σ0ππ(γ)

(
s′
)

(1 + δVP)
(
1− ηπ

(
s′
))
, (2)

where δVP is the Vacuum Polarization (VP) correction, ηπ accounts for the
FSR radiation assuming point-like pions. σ0ππ is a bare cross section, i.e.
corrected for the running of αem and inclusive of FSR, defined as [6]

σ0
(
π+π−, s′

)
=
dσ (π+π−γ, ISR) /ds′

dσ (µ+µ−γ, ISR) /ds′
× σ0

(
e+e− → µ+µ−γ, s′

)
, (3)

where s′ = sπ = sµ.
Many radiative corrections drop out for this ratio method: contributions

due to the radiator function (this allows to suppress the related systematic
uncertainty of 0.5% for the direct σππ measurement), to the integrated lu-
minosity (since the data for the π+π−γ and µ+µ−γ processes are collected
simultaneously) and, finally, to the vacuum polarization.

2. Measurement of the e+e− → π+π− cross section at KLOE

In the 2008 and 2010, two analyses of the σ(e+e− → π+π−γ) have been
performed at DAΦNE with the KLOE detector.

A cross section of the detector in the y, z plane is shown in Fig. 1.
The KLOE08 analysis [7] used a data sample corresponding to an inte-

grated luminosity of 240 pb−1 collected at
√
s = mφ in 2002 and selection

cuts in which the photon is emitted within a cone of θγ < 15◦ around the
beamline (narrow cones in Fig. 1) and the two charged pion tracks have
50◦ < θπ < 130◦ (wide cones in Fig. 1). In this configuration, the photon
is not detected and the photon momentum is reconstructed from missing
momentum: ~pγ ' ~pmiss = −( ~p+ + ~p−). These selection cuts provide high
statistics data sample for the ISR signal events, and significantly reduce
contamination from the resonant process e+e− → φ→ π+π−π0.

From the bare cross section, the dipion contribution to the muon anomaly
∆ππaµ is measured

∆ππaµ(0.592 < Mππ < 0.975 GeV) = (387.2± 3.3)× 10−10 .
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Fig. 1. Schematic view of the KLOE detector with selection regions.

The KLOE10 analysis [8] was performed requiring events that are se-
lected to have a photon at large polar angles between 50◦ < θγ < 130◦ (wide
cones in Fig. 1), in the same angular region as the pions.

This selection allows to access the two-pion threshold. However, com-
pared to the measurement with photons at small angles, this condition re-
duces statistics and increases the background from the process φ→ π+π−π0.
The dispersion integral for ∆ππaµ is computed as the sum of the values for
σ0ππ(γ) times the kernel K(s), times ∆s = 0.01 GeV2

∆ππaµ =
1

4π3

smax∫
smin

ds σ0ππ(γ)(s)K(s) . (4)

The following value for the dipion contribution to the muon anomaly
∆ππaµ was found

∆ππaµ(0.1−0.85) GeV2 = (478.5± 2.0stat ± 5.0exp ± 4.5theor)× 10−10 .

The last KLOE measurement of the e+e− → π+π− cross section
(KLOE12) has been obtained from the ratio between the pion and muon ISR
differential cross section. The data sample is the same as for the KLOE08
analysis. The separation between the ππγ and µµγ events is obtained
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assuming the final state with two charged particles with equal mass MTRK

and one photon. The MTRK < 115 MeV identifies the muons and MTRK >
130 MeV the pions.

The selection procedure has been compared to other techniques, such as
a kinematic fit or applying a quality cut on the helix fit for both tracks, all
leading to consistent results.

Trigger, particle identification and tracking efficiencies have been checked
using control data samples.

The differential µµγ cross section is obtained from the observed event
count Nobs and background estimate Nbkg, as

dσµµγ
dsµ

=
Nobs −Nbkg

∆sµ

1

ε(sµ)L
, (5)

where L is the integrated luminosity from Ref. [9] and ε(sµ) the selection
efficiency. The bare cross section σ0ππ(γ) (inclusive of FSR, with VP effects
removed) is obtained from the bin-by-bin ratio of the KLOE08 ππγ and the
described above µµγ differential cross sections. The bare cross section is
used in the dispersion integral to compute ∆ππaµ. The pion form factor
|Fπ|2 is extracted using Eq. (2).

Equation (4) gives ∆ππaµ = (385.1± 1.1stat ± 2.6exp ± 0.8theor)× 10−10

in the interval 0.35 < M2
ππ < 0.95 GeV2. For each bin contributing to the

integral, statistical errors are combined in quadrature and systematic errors
are added linearly.

The last three KLOE estimations on the ∆ππaµ (KLOE08, KLOE10,
KLOE12) have been compared and are consistent (as one can see in Table I).

TABLE I

Comparison of∆ππaµ between the KLOE12 and the previous KLOE measurements
(KLOE08, KLOE10).

Measurement ∆aππµ
(
0.35−0.95 GeV2

)
× 1010

KLOE12 385.1± 1.1stat ± 2.7syst+theor

KLOE08 387.2± 0.5stat ± 3.3syts+theor

∆aππµ
(
0.35−0.85 GeV2

)
× 1010

KLOE12 377.4± 1.1stat ± 2.7syst+theor

KLOE10 376.6± 0.9stat ± 3.3syst+theor

The preliminary combination of these KLOE results is reported in fig-
ure 2 [10]. It is obtained using the Best Linear Unbiased Estimate (BLUE)
method [11, 12]. In Fig. 2 (left), the pion form factor measurements for the
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three KLOE analysis and the fractional difference (right) are shown [10].
The cross section ratio method used in the KLOE12 measurement reduces
significantly the theoretical and the systematic error.

The following aµππ values are found:

aµππ
(
0.1−0.95 GeV2

)
= (487.8± 5.7)× 10−10 ,

aµππ
(
0.1−0.85 GeV2

)
= (378.1± 2.8)× 10−10 .

|FKLOEXX|2−|FBLUE|2
|FBLUE|2 .

Fig. 2. Preliminary combination of the last three KLOE results (KLOE08,
KLOE10, KLOE12) on the pion form factor measurements (left) and the fractional
difference (right) using the Best Linear Unbiased Estimate (BLUE) method [11, 12].
The light gray/blue band in the fractional difference is the statistical error and the
dark gray/blue band is the combined statistical and systematic uncertainty [10].

3. Conclusion

Precision measurements of the pion vector form factor using the Initial
State Radiation (ISR) have been performed by the KLOE/KLOE-2 Collab-
oration during the last 10 years. The preliminary consolidation of the last
analysis (KLOE12) with two previously published (KLOE08, KLOE10) ones
has been presented. The result confirms the current discrepancy (∼ 3σ) be-
tween the Standard Model (SM) calculation and the experimental value of
the muon anomaly aµ measured at BNL. In the near future, the γγ Physics
program of the KLOE-2 experiment [13] will further shed light in this field,
with e.g. the study of the radiative width of pseudoscalar mesons and of the
transition form factors [14], thanks to the luminosity upgrade of DAΦNE
and the KLOE upgrade with the addition of new detectors: low energy [15]
and high energy [16] e+e− taggers, an inner tracker [17], crystal calorimeters
(CCALT) [18], and tile calorimeters (QCALT) [19].
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