Vol. 46 (2015) ACTA PHYSICA POLONICA B No 10

ENTANGLEMENT IN THE MIXED-THREE-SPIN
XXX HEISENBERG MODEL WITH
THE NEXT-NEAREST-NEIGHBOUR INTERACTION

HAMID ARIAN ZAD

Department of Physics, Shahrood University of Technology
36155-316, Shahrood, Iran

(Received April 8, 2015; revised version received July 6, 2015;
final version received July 17, 2015)

In this paper, we investigate thermal pairwise quantum correlation for
any pair of spins of a mixed-three-spin X XX Heisenberg system (with
spins connected together with the nearest-neighbour (NN) and that of the
next-nearest-neighbour (NNN) coupling constants J; and Jo) by means of
concurrence and quantum discord, as functions of temperature T, magnetic
field B and the coupling constants J, and J;. Some comparisons between
these measures of entanglement are done for next-nearest-neighbour spins.
We also express some magnetic properties and discuss the behaviour of
the system in some special critical points. Some interesting and novel
discussions are done to introduce some entanglement witnesses.
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1. Introduction

Quantum entanglement is one of the most interesting correlations |1, 2]
which can exist only between quantum systems [3-5|. Recently, scientists
are interested in entanglement for quantum systems such as the Heisenberg
spin chains. This is because the Heisenberg spin chains are good candidates
for studying the entanglement and simulating the nearest-neighbour inter-
actions between quantum spins by verification some peculiar quantities [6].
For example, concurrence 7], negativity and quantum phase transition [8],
quantum discord [9], quantum disorder (this subject has been precisely stud-
ied for the spin-1 Heisenberg chain in Ref. [10]), classical correlation, cor-
relation functions, Von Neumann entropies [11], heat capacity and also in
some cases with Dzyaloshinskii-Moriya (DM) interaction [12] for any pair of
spins in the Heisenberg spin chains, have been studied [13—18|. The Heisen-
berg spin systems were used to study quantum dots [19, 20|, entanglement
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controlling [21], and optical lattices [22]. In these references and in most
of other papers, the NN interaction has been considered. Straightforward
researches have been done about the next-nearest-neighbour interaction in
the Heisenberg spin chains in Refs. [23, 24].

Recently, interesting investigations on the mixture of different spins have
been reported in Refs. [17, 26]. In this work, we investigate pairwise entan-
glement for a mixed-three-spin (1/2,1,1/2) X X X Heisenberg chain with NN
and NNN interaction in thermal equilibrium state, then introduce some spe-
cial critical points which describe behaviours of this system in terms of the
temperature T', the magnetic field B and the coupling constants changes.
At first, we characterize the concurrence and the quantum discord in Sec. 2,
in Sec. 3 we introduce our favourite model and represent circumstance of
calculation of the Hamiltonian and density matrices. In Sec. 4, we will show
numerical calculations and simulations of the pairwise entanglement for spins
(1/2,1/2) (with NNN coupling constant .J2) and spins (1,1/2) (with NN cou-
pling constant J;) in terms of the temperature, the magnetic field and the
coupling constants J; and Jy. After this, we usually use (sub)system A
and (sub)system B term instead of the spins (1/2,1/2) and the spins (1,1/2)
respectively. Section 5 concludes our main findings.

2. Measures of entanglement

Two powerful tools for verifying the pairwise entanglement of a bipar-
tite system (in qubit—qubit or qubit—qutrit) are concurrence and quantum
discord. We introduce them in this section.

2.1. Concurrence

The concurrence is a measure of entanglement, albeit only for states of
two qubits [27] and it is defined as

4
C(pas) :maX{O,Q)\—Z)\,} ) (1)

i=1

where A = max{A1, A2, A3, A1} and \; are square roots of the eigenvalues of
the inner product
R = papas (2)
with
pas = (oy ® Uy)PTAB(Uy ® oy) (3)
for spins (1/2,1/2), and

pas = (Jy ® Uy)PTAB(Jy ® oy) (4)
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for spins (1,1/2), where, on the standard basis, for a quantum system with
Hamiltonian H in the thermal equilibrium state, p is defined as

exp(=fH)
— 5
7 = Tefexp(—pH] ?
where 8 is 1/T (we here set kg = 1), T is the temperature and Z =

Trlexp(—BH)] is the partition function of the system. p! denotes the com-
plex conjugation of density matrix p [29, 30] and

0 0 —i 0
oy = . Jy=V2 a0 —i . (6)
v 0 0 i 0

According to the exact numerical calculations for Heisenberg spin models
with NN spin interaction, plans of the concurrence and the quantum dis-
cord, with respect to the temperature and the magnetic field, have been
presented in Ref. [16]. All these say us that if we have a system in a max-
imally entangled state, then C(p45) = 1, while for a system in a separable
state C'(pap) = 0. With regard to these plans, C(p43) behaves as a sudden
death at a critical temperature that is named “entanglement sudden death”
(for more see Refs. [13, 32]). Moreover, in the finite temperatures and weak
magnetic fields we also have a maximum amount of the concurrence, there-
fore the considered system has an entangled state in this region. We will
investigate the concurrence and the quantum discord behaviours in some
critical points for any pair of spins of the mixed-three-spin (1/2,1,1/2), with
respect to the temperature, the magnetic field and the coupling constants
J1 and Jy. Then will present some interesting outcomes.

2.2. Quantum Discord (QD)

Let us review the Quantum Discord briefly. Total correlation in a bipar-
tite quantum system with (sub)systems A and B is measured by quantum
mutual information, which is defined as

I(pa:ps) = S(pa) + S(ps) — S(pas) - (7)

The quantum mutual information has fundamental physical significance and
is usually used as a measure of total correlations that include quantum
information and classical ones (this subject has been precisely studied in
Refs. [5, 32]). The classical correlation may be defined in terms of projec-
tive measurement. Suppose, we perform a set of projective measurements
{B*} on the (sub)system B with a set of complete projectors B¥, then the
probability of measurement outcome k£ may be defined as

pr = Tras [(IA@Bk) PAB (IA@Bk)] : (8)
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where T4 is the identity operator for (sub)system A. After this measure-
ment, state of (sub)system A is described by the conditional density operator

pk:plk [(I‘A@JBk) PAB (I‘A®Bkﬂ . (9)

The projectors B¥ can be parametrized as B¥ = V|k)(k[V!, where k = 0,1
and the transform matrix V is

_ cos(6) e~ sin(6)
V= < e?sin(f)  — cos(h) > ’ (10)

where 0 < 0 < 27 and 0 < ¢ < 2w. We define the upper limit of the
difference between the Von Neumann entropy S(p4) and the based-on-
measurement quantum conditional entropy S(pas|{B*}) = >, prS(px) of
subsystem A i.e.,

CO(pas) = supsey {5 (04) = S (pasl {B'}) } . (11)

then Quantum Discord is defined by QD(pag) = I(pa : pB) — CC(pan),
therefore

QD(pas) = S(pa) — S(pas) + Smin(p.aB) , (12)

where Snin(pag) = min{Bk}S(pABHBk}) [13]. The Quantum Discord and
Classical Correlation have been verified in |14].

3. Mixed-three-spin (1/2,1,1/2) X X X Heisenberg model

We introduce Hamiltonian of the mixed-three-spin (1/2,1,1/2) system
with NN and that of the NNN coupling constants, which in an external
homogeneous magnetic field B is

H:J1<§1-§2+§2-§3>+J2(§1-§3)+§:§-§i, (13)
i=1

where S; = {S¥r,8Y,57} for i = 1,3 and Sy = {J&,JY,J5}. Jy and Jy are
the coupling constants between the spins (1,1/2) and the spins (1/2,1/2)
respectively. Si(i = 1,2,3) are spin operators (with A = 1), which are
introduced as the following equations:

1 0

0o -1 )°

. 0 1 0 —i .
S—_;<1 0), Sy—_;<i 0), 5% =
(14)

NO|—=
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0 1 0 0 —i 0
Jr=+v2 1 0 1 |, JU=v2| i 0 —i |,
0 1 0 0 i 0
1 0 0 (15)
J=1 0 0 0
0 0 -1

Here, we consider B = B, that is a homogeneous magnetic field in the
z-direction. Note that the parameters introduced here are dimensionless.
Eigenvectors of the Hamiltonian are

| 1) = 11/2,1,1/2),

| ¢o) = [1/2,1,-1/2) —v/21/2,0,1/2)+ | =1/2,1,1/2),

| ¢3) = [1/2,-1,-1/2) =2 | —=1/2,0,—1/2)+ | —1/2,-1,1/2),
| ) = |1/2,—1,—-1/2) + V2| =1/2,0,—1/2)+ | —=1/2,—-1,1/2),
| ¢5) = |1/2,1,—1/2) +v2]1/2,0,1/2)+ | =1/2,1,1/2),

| ¢6) = | —1/2,-1,-1/2),

| ¢7) = —11/2,-1,1/2)+ | -1/2,1,-1/2),

‘ ¢8> = ‘ 1/2707_1/2> + \éi(| 1/27_17 1/2>+ ’ _1/2717_1/2>)

+-1/2,0,1/2),
[ do) = 11/2,0,-1/2) = v2(] 1/2,-1,1/2)+ | ~1/2,1,-1/2))
+-1/2,0,1/2),

| ¢10> = - | 1/27_17 _1/2>+ | _1/27 -1, 1/2>7
’¢11> = —‘1/2,1,—1/2>+|—1/2,1,1/2),
| ¢12> = - | 1/2707_1/2>+ | _1/2’07 1/2>a (16)

and its eigenvalues are

Ey = 1h+ 1 +2B, Ey=1Jy—J1+ B, E3=1Jo—J1— B,

Ey = 3J2+J1— B, Es=ih+ 1 +B, E¢=jiJa+J1—2B,
E7 = %JQ_Jl’ EgZiJQ_FJl, EQZiJ2_2J17
Fio = —%JQ—B7 = —%JQ—FB, Ep = _%JZ' (17)

In the standard states, we can characterize total density matrix of the
considered system in the thermal equilibrium state, by using Eq. (13). There-
fore, density matrix of any pair of spins can be expressed as
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« 0 0 0 0 0
0 A X 0 0 0 5§ 0 0 0
n 1]l 0 X D 0 0 0 n 1|l o0 P ¢ 0
P2=7 1 0 0o o F ¢ o> PBTZ|l 0 ¢ @ o0 |’
0 0 0 ¢& G 0 0 0 0 ¥
0 0 0 0 0 ~
(18)

where T7 and Ty are partial traces over first and second spins, respec-
tively, (note that these matrices are symmetric). {a,\,&,7v,d,(, x} and
{A,D,F,G,P,Q} are functions of the T, B and Jy with respect to the Ji,
and also a mixture of total density matrix components that we analytically

calculate using MapleTM software.

4. Numerical calculations

Finally, we calculate numerically corresponding concurrences using
Eq. (18) for (sub)systems A and B, with respect to the temperature T and
the coupling constant J» (Figs. 1 (a) and 2 (a)), and also with respect to
the magnetic field B and the coupling constant J» (Figs. 1 (b) and 2 (b)),
for finding critical temperatures and critical magnetic fields of which the
concurrences vanish and the entanglement death occurs). Concurrences in-
crease monotonously from zero to a maximum, with the decreasing of the
temperature T' and also with the increasing of the magnetic field B (note
that our calculations are according to the changes of T, B and Jo with
respect to Jp).

4

3 T :
Lid 1 g 1 : &l 10

Fig. 1. Concurrence for (sub)system A, (a) with respect to the temperature and Jo
at B = Jy, and (b) with respect to the magnetic field and J at finite temperature
(T = 0.1J7). Note that here for J, > J; the concurrence does not vanishes at
B =0.
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Fig.2. Concurrence for (sub)system B, (a) with respect to the temperature and Jy
at B = Jy, and (b) with respect to the magnetic field and J, at finite temperature
(T = 0.1.11).

In finite low temperatures (T < J;) and strong magnetic fields (B > Jp),
Figs. 1 (a) and (b) show that the concurrence between spins (1/2,1/2) in-
creases and reaches the maximum, with the increasing of the coupling con-
stant Jo(J2 > Jp), while Figs. 2 (a) and (b) show that the concurrence
between spins (1,1/2) increases but with the decreasing of Ja (from Jo ~ J;
to zero). So, for the favourite mixed-three-spin system, the concurrences are
solely dependent on the coupling constant Js.

It is mentioned that in the finite low temperatures and strong mag-
netic fields, the concurrences reach the maximum amounts, therefore ground
states of (sub)systems A and B are entangled at Jo > J; and Jo < J; re-
spectively. In the high temperatures and weak magnetic fields, they behave
as an entanglement sudden death, just like concurrences which have been
presented in Refs. [13, 16], but with an explicit difference that here, in the
various magnetic fields, the entanglement sudden death occurs in the various
critical temperatures, whereas in the previous works, it occurs in the iden-
tical critical temperature. This property of (sub)systems A and B is shown
in Fig. 3. It is clear that, by the magnetic field changes, the entanglement
sudden death occures at different critical temperatures, which means that
the critical temperature is a function of the magnetic field.

Further, in Fig. 4 we plot critical temperature changes with respect to
the coupling constant Jo, for both of (sub)systems A and B. This figure
shows that the critical temperature for (sub)system A increases with the
increasing of the coupling constant Jo, but we see that this value decreases
for (sub)system B. The inset of Fig. 4 shows that the critical temperature
reaches a permanent value for (sub)system A at the very high coupling
constant Jo(Jo > Jp). Critical magnetic field changes with respect to the
coupling constant Jo, for both of (sub)systems, which is shown in Fig. 5.
This figure shows that critical magnetic field for (sub)system A decreases
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Fig.3. The magnetic field dependence of the critical temperature T;. for (sub)sys-
tems A and B.
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Fig.4. The coupling constant Jy dependence of the critical temperature T, at
B = J; for (sub)systems A and B.

with the increasing of the coupling constant Js, but this value increases for
(sub)system B. For Jy > Ji, the critical magnetic field for (sub)system A
reaches a permanent value, whereas at Jo < Jp, the critical magnetic field
is a permanent value for (sub)system 5.

Finally, we study the pairwise entanglement by verifying the quantum
discord for (sub)system .A. This quantity is shown in Fig. 6. As illustrated
in this figure, at finite temperatures and the high coupling constant Jo, we
see that the quantum discord is in the maximum (just like its concurrence
shown in Fig. 1). It means that the ground state of (sub)system A (in
this area) is entangled, in other words, the spins (1/2,1/2) have a quantum
correlation. This quantity decreases with the increasing of the temperature
and decreasing of the Js. Note that all of introduced figures both for the
concurrence and the quantum discord are asymmetric.
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Fig.5. The coupling constant J; dependence of the critical magnetic field B, at
the finite temperatures, for (sub)systems A and B.
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Fig.6. Quantum discord for (sub)system A, (a) with respect to the temperature
and Jy at B = Jp, and (b) with respect to the magnetic field and Jy at finite
temperature (7' = 0.1.J;).

At infinite temperatures and the low coupling constant J, (Fig. 6 (a)) and
also at weak magnetic fields and the low coupling constant Jo (Fig. 6 (b)),
the quantum discord does not vanish. This phenomenon represents power
of this measure of entanglement for verifying quantum correlations between
spins (1/2,1/2) rather than the concurrence.

Differences between the quantum discord and the concurrence for
(sub)system A are shown in Figs. 7 and 8. As shown in these figures, we
see that diagrams of the concurrence and the quantum discord are generally
different. At the high coupling constant Jo, these diagrams are almost sim-
ilar to each other at various temperatures (Fig. 7 (a)) and various magnetic
fields (Fig. 7 (b)), but in the low coupling constant J2, they have explic-
itly different behaviour, namely the concurrence at this range of J, vanishes
completely, whereas the quantum discord does not vanishes completely.
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Fig.7. The coupling constant J, dependence of the concurrence and the quantum
discord for (sub)system A, (a) at various temperatures and B = Jp, and (b) at
various magnetic fields and finite temperature (7" = 0.1.J7).
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Fig.8. Temperature dependence of the concurrence and the quantum discord for
(sub)system A at the various coupling constant Jy and B = Jj.

Comparison between the concurrence and the quantum discord versus
temperature is presented in Fig. 8. As shown in this figure, at infinite
temperatures, their diagrams are different from each other. One can see
that the entanglement sudden death occurs in the concurrence diagrams,
whereas it does not occur for the quantum discord diagrams (interestingly,
the quantum discord does not vanish even at infinite temperatures and zero
coupling constant .Ja).

At the end of this paper, we present our new results about entanglement
witnesses existence of our favourite system. Relationship between the tem-
perature and the coupling constant Jo, also between the magnetic field and
the coupling constant Jo, are shown in Figs. 9 and 10 for (sub)system A
and (sub)system B respectively. These figures show a boundary between
the entangled states and separable states (solid lines), therefore they can be
considered as interesting entanglement witnesses.
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Fig.9. Boundary between entangled states and separable states for (sub)system A,
(a) with respect to the temperature and the coupling constant Jy at B = Ja,
and (b) with respect to the magnetic field and the coupling constant J,, at finite
temperature (7' = 0.1.J;).
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Fig. 10. Boundary between entangled states and separable states for (sub)system B,
(a) with respect to the temperature and the coupling constant Jo at B = Ja,
and (b) with respect to the magnetic field and the coupling constant Jy, at finite
temperature (7' = 0.1.J;).

5. Summary and discussion

In this work, we have investigated pairwise entanglement for a mixed-
three-spin X X X Heisenberg model with the nearest-neighbour and the next-
nearest-neighbour interactions, in an external homogeneous magnetic field B
in thermal equilibrium state, by means of the concurrence for (sub)system A
and (sub)system B. In this way, the quantum discord has also been investi-
gated for (sub)system .A.
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Figures 1 (a) and 2 (a) show increment of the pairwise entanglement with
the decreasing of the temperature T and increasing of the magnetic field B.
With the increasing temperature pairwise entanglement vanishes gradually
and in the high temperatures the (sub)systems become separable. We have
verified the concurrences as functions of the coupling constants Jo and the
magnetic field B with respect to J; at the finite temperatures in Figs. 1 (b)
and 2 (b). As shown in these figures, the concurrence for (sub)system A
increases with the increasing of the Jy(J2 > Jp), and reach the maximum at
Jo > Ji and B > Jj, whereas the concurrence for (sub)system B increases
with the decreasing of Jo (J2 < Jj), and reach the maximum at Jo < Jj
and B > J;. One can see that the pairwise entanglement for (sub)system A
is stronger than (sub)system B, more generally, entanglement between the
same spins is stronger than non-uniform spins.

We have also investigated the critical temperature 7. and the critical
magnetic field B, for both of the (sub)systems and obtained some interest-
ing outcomes (see Figs. 3, 4 and 5). As illustrated in these figures, we see
explicitly that the critical temperature is related to the magnetic field and
the coupling constant Jy (it increases with the increasing of the magnetic
field). With the increasing of the coupling constant Jo, this parameter in-
creases (decreases) (sub)system A ((sub)system B). The critical magnetic
field B. (Fig. 4) changes with respect to the variations of the coupling con-
stant Jy, for any of the (sub)systems.

Moreover, we have verified the quantum discord as a measure of entangle-
ment for (sub)system .4, and have expressed some interesting and reasonable
results by simulating it, as shown in Fig. 6. In this figure, one can find a
good compatibility between our conclusions and previous interpretations of
the quantum discord in Refs. [13, 14, 16], where at finite temperatures and
Ja > Ji, the quantum discord is in the maximum value for (sub)system A.

Figure 6 (b) shows that the quantum discord decreases with the de-
creasing of the coupling constant Jo. Generally, with the increasing of the
temperature and decreasing of the Js, this measure of entanglement grad-
ually decreases until it reaches the minimum value, but does not vanish at
infinite temperatures (while the concurrence for both of the (sub)systems
vanishes at special critical temperatures). Therefore, the quantum discord
and the concurrence present different types of quantum correlations between
spins (1/2,1/2).

The difference between the concurrence and the quantum discord was
shown in Figs. 7 and 8. From these figures we can conclude that the quantum
discord is strongly related to the ratio of the NNN and NN coupling constants
(JQ and Jl)
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Finally, we have introduced relationship between the temperature and
the coupling constant Js, also between the magnetic field and the coupling
constant Js, as entanglement witnesses for both of the (sub)systems. We
have also seen that these witnesses for (sub)systems A and B are generally
different from each other. These conclusions are valid for XX, XX Z and
XY Z models.
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