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The rare semileptonic χc1(1p)→ D+
s eν̄ decay is analyzed by using the

three-point QCD sum rules. Taking into account the two-gluon conden-
sate contributions, the transition form factors related to this decay are
calculated and are used to determine the total decay width and branching
fraction. Our findings may be approved by future experiments.
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1. Introduction

Quarkonia are bound states of QQ where Q is a heavy quark, either a
charm quark, cc (charmonium) or a beauty quark, bb (bottomonium). To-
ponium does not exist, since the top-quark decays through the electroweak
interaction before a bound state can take form. In the case of the lighter
quarks (u, d, s), the physical states seen in experiments are quantum me-
chanical mixtures of the light quark states. The analysis of heavy quark and
anti-quark systems are a proper candidate for applying QCD. Production
and decays of quarkonium have long been used to investigate the nature of
QCD. Due to heavy, but not very heavy quark mass, one can get knowledge
of both perturbative and non-perturbative QCD through the analysis of the
nature of production and decays of quarkonium. Properties of these systems
have been theoretically calculated, mainly using a potential model, where
∗ Funded by SCOAP3 under Creative Commons License, CC-BY 3.0.
† Ghahramany@physics.susc.ac.ir

(1939)



1940 N. Ghahramany, A.R. Houshyar

the potential V = −4
3
αs
r +kr describes the static potential of the quarkonia,

or its extension like the Coulomb gauge model [1–5]. The first term in the
above potential is related to the one-gluon exchange and the second term is
called the confinement potential.

A recent study on the calculation of ground-state decay constant by
QCD sum rules and potential models shows that they both follow the same
pattern. In addition, it has been revealed that using the QCD sum rules,
we can get a more precise calculation of the bound-state characteristics as
compared to the potential models [6]. The QCD sum rules are a reliable
method for spectroscopy and obtaining the properties of the hadrons [7–10].
Furthermore, this method has been used for the calculation of masses and
decay constants of the mesons [11–18]. Semileptonic decay of heavy mesons
has been the aim of many recent studies. Semileptonic decay of the scalar,
pseudoscalar, vector and axial-vector mesons using three-point QCD sum
rules were the subject of these papers [19–29].

The present research was undertaken to study the semileptonic decay of
axial-vector p-wave charmonium χc1(1p) with the quantum numbers JPC =
1++ into the pseudoscalar D+

s meson. The objective of this work is to eval-
uate the decay width of χc1(1p)→ D+

s eν̄ by considering two-gluon conden-
sates as the first non-perturbative contribution to the correlation function.
Heavy quark condensates are suppressed here by the inverse powers of the
heavy quark mass.

This paper includes the following sections: in Section 2, the calculation
of sum rules is presented for the related form factors in which the two-gluon
condensates contributions to the correlation function is considered. Section 3
consists of the numerical analysis of the form factors and the estimation of
the branching fraction. In the last section, the conclusions are discussed.

2. Theoretical analysis of form factors for χc1(1p) → D+
s eν̄

in the context of QCD sum rules

The decay of χc1(1p) → D+
s eν̄ is described in the Standard Model, in

terms of quark degrees of freedom by the process c → seν at tree-level
(Fig. 1). The effective Hamiltonian for this transition can be written as

Heff =
GF√

2
Vcsνγ

µ(1− γ5)esγµ(1− γ5)c , (1)

where GF stands for Fermi constant and Vcs is the element of the Cabibbo–
Kobayashi–Maskawa (CKM) matrix. The transition amplitude of the χc1(1p)
→ D+

s eν̄ is obtained by sandwiching Eq. (1) between the initial and final
meson states

M =
GF√

2
Vcsψνγ

µ(1− γ5)ψe
〈
D+
s

(
p′
)
|sγµ(1− γ5)c|χc1(1p)(p, ε)

〉
. (2)
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Fig. 1. (a) Bare loop. (b) Light quark condensates. (c), (d) Light quark condensates
with one-gluon emission for χc1(1p)→ D+

s eν̄ decay.

To continue, we need to calculate the matrix element 〈D+
s (p′)|sγµ(1 − γ5)

c|χc1(1p)(p, ε)〉. We parameterize the matrix element in terms of the form
factors

〈
D+
s

(
p′
)
|sγµ(1− γ5)c|χc1(1p)(p, ε)

〉
= −εµναβε∗νpαp′β

2V
(
q2
)

mD+
s

+mχc1(1p)

+i

[
ε∗µ

(
mD+

s
+mχc1(1p)

)
A1

(
q2
)
− (ε∗q)Pµ

A2

(
q2
)

mD+
s

+mχc1(1p)

− (ε∗q)
2mD+

s

q2

[
A3

(
q2
)
−A0

(
q2
)]
qµ

]
. (3)

In Eq. (3), Pµ = (p + p′)µ, qµ = (p − p′) and ε is the polarization vector
of the axial-vector meson. To have finite results at q2 = 0, the condition of
A3(0) = A0(0) is required. The form factors V , A1 and A2 can be written
as a linear combination of A1 and A2 as follows

A3

(
q2
)

=
mχc1(1p) +mD+

s

2mD+
s

A1

(
q2
)
−
mχc1(1p) −mD+

s

2mD+
s

A2

(
q2
)
. (4)
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The form factors V , A1 and A2 are calculated by using the following three-
point correlation function

Πµν = i2
∫
d4xd4ye−ipxeip

′y〈0|T
{
JD+

s
(y)Jµ(0)J†χc1(1p)(x)

}
|0〉 , (5)

where Jχc1(1p)(x) = cγνγ5c is the interpolating current of the axial meson
and JD+

s
(y) = cγ5s is the interpolating current of the pseudoscalar meson.

The transition current is Jµ(0) = sγµ(1− γ5)c.
The above correlation function is calculated in two different approaches:

first, in the hadron context which is called the phenomenological or phys-
ical part and the second is the QCD or theoretical approach, obtained in
the quark–gluon language. The form factor expressions are determined by
equating the corresponding coefficients of the two parts. We use a double
Borel transformation with respect to p and p′ to suppress the contributions
coming from higher states and continuum. To obtain the physical part, a
complete set of intermediate states with the same quantum numbers are
inserted in Eq. (5). Therefore, we obtain

Πµν

(
p2, p′ 2, q2

)
=

〈
0
∣∣∣JD+

s

∣∣∣D+
s (p′)

〉
〈D+

s (p′) |Jµ(0)|χc1(1p)(p)〉
〈
χc1(1p)(p)

∣∣∣J†ν,χc1(1p)

∣∣∣ 0〉(
p′2 −m2

D+
s

)(
p2 −m2

χc1(1p)

)
+ the higher resonances and continuum . (6)

The matrix elements in Eq. (6) can be parameterized in terms of the leptonic
decay constants of D+

s and χc1(1p) mesons as:〈
0
∣∣∣JD+

s

∣∣∣D+
s

(
p′
)〉

=
ifD+

s
m2
D+
s

mc +ms
,〈

0
∣∣Jν,χc1(1p)

∣∣χc1(1p)(p)
〉

= fχc1(1p)mχc1(1p)εν . (7)

To obtain the physical part, Eq. (3) and Eqs. (7) are substituted in Eq. (6)
and the summation is performed over the polarization of χc1(1p) meson

Πµν

(
p2, p′ 2, q2

)
=

fD+
s
fχc1(1p)m

2
D+
s
mχc1(1p)

(mc +ms)
(
p′2 −m2

D+
s

)(
p2 −m2

χc1(1p)

)
×

{
iεµναβp

αp′β
2V
(
q2
)

mD+
s

+mχc1(1p)
−
(
mD+

s
+mχc1(1p)

)
×

(
−gµν +

(P + q)µ(P + q)ν
4m2

χc1(1p)

)
A1

(
q2
)
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+
1

mD+
s

+mχc1(1p)
Pµ

(
−qν +

pq(P + q)ν
2m2

χc1(1p)

)
A2

(
q2
)

+
2mD+

s

q2
qµ

(
−qν +

pq(P + q)ν
2m2

χc1(1p)

)[
A3

(
q2
)
−A0

(
q2
)]}

.

(8)

To find the expressions for the form factors V , A1 and A2, the coefficients
of the Lorentz structures iεµναβpαp′β , gµν and Pµqν are required. Therefore,
the correlation function is written in terms of the chosen Lorentz structures
as follows:

Πµν

(
p2, p′ 2, q2

)
= ΠV iεµναβp

αp′β +ΠA1gµν +ΠA2Pµqν + . . . (9)

where . . . stands for other tensor structures. To find the QCD part of the
correlation function, the three-point correlator is determined by using the
operator product expansion method (OPE) in the deep Euclidean region
p2 � 4m2

c , p′2 � (m2
c +m2

s). Then, the correlation function may appear in
perturbative and non-perturbative parts as follows:

Πi

(
p2, p′ 2, q2

)
= Πper

i

(
p2, p′ 2, q2

)
+Πnon−per

i

(
p2, p′ 2, q2

)
, (10)

where we use i to indicate V , A1 and A2. The bare loop diagram (Fig. 1 (a))
is considered for the perturbative part. Only the gluon condensate dia-
grams are considered as first non-perturbative part (Fig. 2 (a)–(f)) because
the double Borel transformations eliminate the light-quark condensates, con-
tributing to the correlation function. Diagrams (b)–(d) in Fig. 1 show the
light-quark condensates. Double dispersion representation used for the bare-
loop contribution is written as

Πper
i = − 1

(2π)2

∫
ds′
∫
ds

ρper
i

(
s, s′q2

)
(s− p2) (s′ − p′ 2)

+ subtraction term . (11)

The quark propagators are replaced by Dirac function, using the Cutkosky
rules, i.e., 1

p2−m2 → 2πiδ(p2 − m2). Such replacement gives the following
inequality:

−1 ≤
2ss′ +

(
s+ s′ − q2

)
(−s) + 2s

(
m2
c −m2

s

)
λ1/2 (s, s′, q2)λ1/2 (m2

c ,m
2
c , s)

≤ 1 , (12)

where λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc. s′ has a lower limit equal
to (mc +ms)

2, and the lower limit of s is also determined from Eq. (12).
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Fig. 2. Gluon condensate contributions to χc1(1p)→ D+
s eν̄ decay.

Once all calculations are carried out, the spectral densities may be writ-
ten as follows:

ρV
(
s, s′, q2

)
= 4Nc ((ms −mc)B2 − 2mcB1 −mcI0) , (13)

ρA1

(
s, s′, q2

)
= 2Nc

(
4 (−ms +mc)A1 + 2mc∆

′I0 + (−ms +mc) I0∆

+2m2
c (−2mc +ms) I0 −mc (u− 2mcms) I0

)
, (14)

ρA2

(
s, s′, q2

)
= 2Nc ((−ms +mc) (−A5 +A2)−mcB2 −msB1) , (15)

where u = s+ s′ − q2, ∆ = s, ∆′ = s′ +m2
c −m2

s and Nc = 3 is the number
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of colors. B1, B2, A1, A2, A5 and I0 are as follows:

I0

(
s, s′, q2

)
=

1

4λ1/2 (s, s′, q2)
,

λ
(
s, s′, q2

)
= s2 + s′2 + q4 − 2sq2 − 2s′q2 − 2ss′ ,

B1 =
1

4λ3/2

(
2s′∆−∆′u

)
,

B2 =
1

4λ3/2

(
2s∆′ −∆u

)
,

A1 =
1

8λ3/2

(
∆′2s+∆2s′ − 4m2

css
′ −∆∆′u+m2

cu
2
)
,

A2 =
1

4λ5/2

(
2∆′2ss′ + 6∆2s′2 − 8m2

css
′2 − 6∆∆′s′u+∆′2u2

+2m2
cs
′u2
)
,

A5 =
1

4λ5/2

(
−6∆∆′s′u+ 6s2∆′2 − 8s2s′m2

c + 2u2sm2
c + u2∆2

+2ss′∆2
)
. (16)

In order to calculate gluon condensate contributions, we should perform
proper integrals which are discussed next [20, 24, 26, 30]. We use Fock–
Schwinger fixed-point gauge, xµGaµ = 0, where Gaµ is the gluon field
[24, 31–33]. Let us list the necessary integrals to calculate the corresponding
diagrams:

I0[a, b, c] =

∫
d4k

(2π)4

1

[k2 −m2
c ]
a [(p+ k)2 −m2

c ]
b
[
(p′ + k)2 −m2

s

]c ,
Iµ[a, b, c] =

∫
d4k

(2π)4

kµ

[k2 −m2
c ]
a [(p+ k)2 −m2

c ]
b
[
(p′ + k)2 −m2

s

]c ,
Iµν [a, b, c] =

∫
d4k

(2π)4

kµkν

[k2 −m2
c ]
a [(p+ k)2 −m2

c ]
b
[
(p′ + k)2 −m2

s

]c . (17)

These integrals can be solved using Schwinger representation for propagators
as follows:

1

(p2 +m2)
=

1

Γ (α)

∞∫
0

dααn−1e−α(p2+m2) . (18)

The Borel transformation which is proper here is:

B̂p
(
M2
)
e−αp

2
= δ

(
1− αM2

)
. (19)
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The transformed results of the integrals after solving them and applying
double Borel transformations over p2 and p′2 are written as

Î0(a, b, c) = i
(−1)a+b+c+1

16π2Γ (a)Γ (b)Γ (c)

(
M2

1

)2−a−b (
M2

2

)2−a−c
×U0(a+ b+ c− 4, 1− c− b) ,

Îµ(a, b, c) = 1
2

[
Î1(a, b, c) + Î2(a, b, c)

]
Pµ + 1

2

[
Î1(a, b, c)− Î2(a, b, c)

]
qµ ,

Îµν(a, b, c) = Î6(a, b, c)gµν + 1
4

(
2Î4 + Î3 + Î5

)
PµPν + 1

4

(
−Î5 + Î3

)
Pµqν

+1
4

(
−Î5 + Î3

)
Pνqµ + 1

4

(
−2Î4 + Î3 + Î5

)
qµqν , (20)

where

Î1(a, b, c) = i
(−1)a+b+c+1

16π2Γ (a)Γ (b)Γ (c)

(
M2

1

)2−a−b (
M2

2

)3−a−c
×U0(a+ b+ c− 5, 1− c− b) ,

Î2(a, b, c) = i
(−1)a+b+c+1

16π2Γ (a)Γ (b)Γ (c)

(
M2

1

)3−a−b (
M2

2

)2−a−c
×U0(a+ b+ c− 5, 1− c− b) ,

Î3(a, b, c) = i
(−1)a+b+c+1

16π2Γ (a)Γ (b)Γ (c)

(
M2

1

)2−a−b (
M2

2

)4−a−c
×U0(a+ b+ c− 6, 1− c− b) ,

Î4(a, b, c) = i
(−1)a+b+c+1

16π2Γ (a)Γ (b)Γ (c)

(
M2

1

)3−a−b (
M2

2

)3−a−c
×U0(a+ b+ c− 6, 1− c− b) ,

Î5(a, b, c) = i
(−1)a+b+c+1

16π2Γ (a)Γ (b)Γ (c)

(
M2

1

)4−a−b (
M2

2

)2−a−c
×U0(a+ b+ c− 6, 1− c− b) ,

Î6(a, b, c) = i
(−1)a+b+c+1

32π2Γ (a)Γ (b)Γ (c)

(
M2

1

)3−a−b (
M2

2

)3−a−c
×U0(a+ b+ c− 6, 2− c− b) . (21)

In Eqs. (20) and (21), M2
1 andM2

2 are the Borel parameters in the s and
s′ channels, respectively, and the function U0(α, β) is defined as:

U0(α, β) =

∞∫
0

dy
(
y +M2

1 +M2
2

)α
yβexp

[
−B−1

y
−B0 −B1y

]
, (22)
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B−1 =
1

M2
1M

2
2

[
m2
sM

4
1 +m2

sM
4
2 +M2

1M
2
2

(
m2
c +m2

s − q2
)]
, (23)

B0 =
1

M2
1M

2
2

[(
m2
s +m2

c

)
M2

1 + 2m2
cM

2
2

]
, (24)

B1 =
m2
c

M2
1M

2
2

. (25)

After doing the calculations, the following results are obtained for gluon
condensate contributions

Π
〈G2〉
i = i

〈αs

π
G2
〉 Ci

24
, (26)

where expressions for Ci are given in Appendix A.
Double Borel transformations with respect to p2(p2 →M2

1 ) and p′2(p′2 →
M2

2 ) are applied on the physical side and QCD side of the correlation func-
tion to find the form factors. After matching the coefficient of the Lorentz
structures of these two representations of the correlator and doing the contin-
uum subtraction to suppress the higher states and continuum, the following
sum rules for the form factors, A1 and A2 are obtained:

V =
(mc +ms)

(
mχc1(1P ) +mD+

s

)
2fD+

s
fχc1(1P )m

2
D+
s
mχc1(1P )

e

m2

D+
s

M2
2 e

m2
χc1(1P )

M2
1

×

− 1

4π2

s′0∫
(mc+ms)2

ds′
s0∫

sL

dsρV
(
s, s′, q2

)
e
− s′

M2
2 e
− s

M2
1 + iM2

1M
2
2

〈αs

π
G2
〉 CV

24

 ,

A1 =
(mc +ms)

fD+
s
fχc1(1P )m

2
D+
s
mχc1(1P )

(
mχc1(1P ) +mD+

s

)em
2

D+
s

M2
2 e

m2
χc1(1P )

M2
1

×

− 1

4π2

s′0∫
(mc+ms)

2

ds′
s0∫

sL

dsρA1

(
s, s′, q2

)
e
− s′

M2
2 e
− s

M2
1 +iM2

1M
2
2

〈αs

π
G2
〉CA1

24

 ,

A2 =
4mχc1(1P )

(
mχc1(1P ) +mD+

s

)
(mc +ms)

fD+
s
fχc1(1P )m

2
D+
s
mχc1(1P )

(
3mχc1(1p) +m2

D+
s
− q2

)em
2

D+
s

M2
2 e

m2
χc1(1P )

M2
1

×

− 1

4π2

s′0∫
(mc+ms)

2

ds′
s0∫

sL

dsρA2

(
s, s′, q2

)
e
− s′

M2
2 e
− s

M2
1 +iM2

1M
2
2

〈αs

π
G2
〉CA2

24

 ,

(27)
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where s0 and s′0 are the continuum thresholds in χc1(1p) and D+
s channels,

respectively and sL is as follows

sL =
m2
c

(
q2 − s′

)2
(q2 −m2

c) (m2
c − s′)

. (28)

Now, let us apply the quark–hadron duality assumption to subtract the
contributions of the higher states and continuum in Eq. (27)

ρhigher states
(
s, s′

)
= ρOPE

(
s, s′

)
θ(s− s0)θ

(
s− s′0

)
. (29)

The form of Borel transformation which is used is as follows:

B̂p
(
M2
){ 1

p2 −m2

}
=

1

M2
e−m

2/M2
. (30)

The differential decay width dΓ/dq2 for the process χc1(1p) → D+
s eν in

terms of the form factors is obtained as follows:

dΓ

dq2d cos θ
=

√
λ

256π3m3
χc1(1p)

|M |2 , (31)

M =
GF√

2
VcsL

µHµ , (32)

|M |2 =
G2

F

2
|Vcs|2LµνHµH

†
ν , (33)

LµνHµH
†
ν =

1

3


(

12m2
χc1(1p)q

2 + λ sin2 θ
)(

mχc1(1p) +mD+
s

)2

m2
χc1(1p)

A2
1

− 2

m2
χc1(1p)

(
−m2

D+
s

+m2
χc1(1p) + q2

)
λ sin2 θA1A2

+
1

m2
χc1(1p)

(
mχc1(1p) +mD+

s

)2λ
2 sin2 θA2

2

+16
√
λq2 cos θA1V

}
, (34)

where λ = m4
χc1(1p) +m4

D+
s

+ q4 − 2m2
χc1(1p)m

2
D+
s
− 2m2

χc1(1p)q
2 − 2m2

D+
s
q2.

Finally, the integration of Eq. (31) over q2 in the interval 0 < q2 <
(mχc1(1p) −mD+

s
)2 is carried out to find the total decay width.
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3. Numerical calculations and results

Considering the expressions for form factors, it is clear that input param-
eters entering our calculations are gluon condensate, elements of the CKM
matrix Vcs, leptonic decay constants, fχc1(1p) and fD+

s
, quark and meson

masses, continuum thresholds s0 and s′0, as well as the Borel parameters
M2

1 and M2
2 . The values of these parameters are chosen to be: 〈αs

π G
2〉 =

0.012 GeV4 [7], |Vcs| = 0.957 ± 0.11 [34], fD+
s

= 0.274 ± 0.013 GeV [35],
fχc1(1p) = 344 ± 27 MeV [36], mc = 1.275 ± 0.015 GeV, ms(1 GeV) '
142 MeV [37],mD+

s
= 1.968 GeV [34],mχc1(1p) = (3.51066±0.00007) GeV [36].

Form factors contain four parameters: Borel mass squares M2
1 and M2

2 , and
continuum thresholds s0 and s′0. These are mathematical parameters, so the
physical quantities, such as form factors, should not depend upon them. The
parameters s0 and s′0, the continuum thresholds of χc1(1p) and D+

s mesons,
are determined from the conditions that guarantee the sum rules to have the
best stability in the allowed M2

1 and M2
2 region. The value of the contin-

uum thresholds, s′0 calculated from the two-point QCD sum rules is taken
to be s′0 = 6–8 GeV2 [38] and s0 = 16 ± 2 GeV2 [39]. The allowed regions
of M2

1 and M2
2 for the form factors are determined from the condition that

guarantees the best stability for the form factors. This condition is satisfied
in the regions of 10 GeV2 ≤M2

1 ≤ 15 GeV2 and 20 GeV2 ≤M2
2 ≤ 30 GeV2

as shown in figure 3. The values of the form factors at q2 = 0 are shown in
Table I.

TABLE I

The values of the form factors at q2 = 0, for M2
1 = 12.5 GeV2, M2

2 = 25 GeV2.

χc1(1p)→ D+
s eν̄

V (0) 0.479

A1(0) −0.017

A2(0) 0.733

Since the sum rules for the form factors are truncated at some points, in
order to extend our calculations to the full physical range, i.e., the region
0 ≤ q2 ≤ 2.38 GeV2, we use suitable parameterization for the form factors.
Our numerical calculations show that the best parameterization of the form
factors with respect to q2 are as follows:

fi
(
q2
)

=
a(

1− q2

m2
fit

) +
b(

1− q2

m2
fit

)2 . (35)

The values of the parameters, a and b are given in Table II.
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Fig. 3. Dependence of the form factors on Borel parameters.

TABLE II

Parameters in the fit function of the form factors, for M2
1 = 12.5 GeV2, M2

2 = 25 GeV2.

a b mfit

V 0.25 0.22 2.1

A1 0.50 −0.51 2.6

A2 −51.20 51.88 2.4

Performing the integration over q2 in Eq. (31) in the interval 0 < q2 <
(mχc1(1p) − mD+

s
)2, we get the expression for the total decay width. Our

calculated value of the branching fraction is presented in Table III.
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TABLE III

Branching fraction of χc1(1p)→ D+
s eν̄.

Decay Branching fraction

χc1(1p)→ D+
s eν̄ 8.67× 10−10

4. Conclusion

In the present work, we studied the rare χc1(1p) → D+
s eν decay in

the context of the three-point QCD sum rules. Taking into account the
two-gluon corrections to the correlation function as a first non-perturbative
contribution, we obtained the form factors. Implementing our findings, we
used proper parametrization for the form factors to calculate the branching
fraction. The present predictions can be confirmed by the experimental data
in the future.

Appendix A

CV = 16mcÎ0 (1, 2, 2)− 96m3
c Î0 (1, 4, 1) + 64m3

c Î0 (2, 3, 1)

+16mcÎ0 (3, 1, 1)− 16m3
c Î0 (3, 1, 2)− 16mcÎ

[0,1]
0 (3, 1, 2)

−16mcÎ
[1,0]
0 (3, 2, 1)− 32m3

c Î
[0,1]
0 (3, 2, 2)− 16m3

c Î
[1,0]
0 (3, 2, 2)

+16mcÎ
[1,1]
0 (3, 2, 2) + 32mcÎ1 (1, 2, 2)− 96mcÎ1 (1, 3, 1)

−192m3
c Î1 (1, 4, 1)− 32mcÎ1 (2, 2, 1) + 32mcÎ

[1,0]
1 (2, 3, 1)

+16mcÎ1 (3, 1, 1)− 48m3
c Î1 (3, 1, 2)− 16mcÎ

[0,1]
1 (3, 1, 2)

−32mcÎ
[1,0]
1 (3, 2, 1)− 64m3

c Î
[0,1]
1 (3, 2, 2)− 32m3

c Î
[1,0]
1 (3, 2, 2)

+32mcÎ
[1,1]
1 (3, 2, 2) + 16mcÎ2 (1, 2, 2)− 96m3

c Î2 (1, 4, 1)

+64mcÎ
[0,1]
2 (2, 3, 1)− 16m3

c Î2 (3, 1, 2)− 16mcÎ
[0,1]
2 (3, 1, 2)

−64m3
c Î2 (3, 2, 1)− 32m3

c Î
[0,1]
2 (3, 2, 2)− 16m3

c Î
[1,0]
2 (3, 2, 2)

+16mcÎ
[1,1]
2 (3, 2, 2) ,

CA1 = −8mcÎ0 (1, 1, 2)− 16mcÎ0 (1, 2, 1)− 16m3
c Î0 (1, 2, 2)

+8mcÎ
[0,1]
0 (1, 2, 2) + 96m3

c Î0 (1, 3, 1)− 48mcÎ
[0,1]
0 (1, 3, 1)

+96m5
c Î0 (1, 4, 1)− 48m3

c Î
[0,1]
0 (1, 4, 1) + 16m3

c Î0 (2, 2, 1)

+16mcÎ
[0,1]
0 (2, 2, 1) + 32m3

c Î
[0,1]
0 (2, 3, 1) + 16m3

c Î
[1,0]
0 (2, 3, 1)
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−16mcÎ
[1,1]
0 (2, 3, 1) + 8mcÎ

[0,1]
0 (3, 1, 1)− 8mcÎ

[1,0]
0 (3, 1, 1)

+24m5
c Î0 (3, 1, 2) + 8m3

c Î
[0,1]
0 (3, 1, 2) + 8m3

c Î
[1,0]
0 (3, 1, 2)

−8mcÎ
[1,1]
0 (3, 1, 2) + 32m3

c Î
[0,1]
0 (3, 2, 1)− 24mcÎ

[1,1]
0 (3, 2, 1)

+8mcÎ
[2,0]
0 (3, 2, 1) + 32m5

c Î
[0,1]
0 (3, 2, 2)− 16m3

c Î
[0,2]
0 (3, 2, 2)

+16m5
c Î

[1,0]
0 (3, 2, 2)− 24m3

c Î
[1,1]
0 (3, 2, 2) + 8mcÎ

[1,2]
0 (3, 2, 2)

+32mcÎ6 (1, 2, 2)− 192m3
c Î6 (1, 4, 1)− 64mcÎ

[0,1]
6 (2, 3, 1)

−64mcÎ
[1,0]
6 (2, 3, 1)− 64m3

c Î
[0,1]
6 (3, 2, 2)− 32m3

c Î
[1,0]
6 (3, 2, 2)

+32mcÎ
[1,1]
6 (3, 2, 2) ,

CA2 = −16m3
c Î0 (3, 1, 2) + 16m3

c Î0 (3, 2, 1)− 4mcÎ1 (1, 2, 2)

+24mcÎ1 (1, 3, 1) + 24m3
c Î1 (1, 4, 1)− 8mcÎ1 (2, 2, 1)

−16m3
c Î1 (2, 3, 1) + 8mcÎ

[1,0]
1 (2, 3, 1)− 4mcÎ1 (3, 1, 1)

−8m3
c Î1 (3, 1, 2) + 16m3

c Î1 (3, 2, 1) + 8mcÎ
[1,0]
1 (3, 2, 1)

+8m3
c Î

[0,1]
1 (3, 2, 2) + 4m3

c Î
[1,0]
1 (3, 2, 2)− 4mcÎ

[1,1]
1 (3, 2, 2)

−4mcÎ2 (1, 2, 2) + 24mcÎ2 (1, 3, 1) + 24m3
c Î2 (1, 4, 1)

−8mcÎ2 (2, 2, 1)− 16m3
c Î2 (2, 3, 1) + 8mcÎ

[1,0]
2 (2, 3, 1)

−4mcÎ2 (3, 1, 1)− 8m3
c Î2 (3, 1, 2) + 16m3

c Î2 (3, 2, 1)

+8mcÎ
[1,0]
2 (3, 2, 1) + 8m3

c Î
[0,1]
2 (3, 2, 2) + 4m3

c Î
[1,0]
2 (3, 2, 2)

−4mcÎ
[1,1]
2 (3, 2, 2) + 8mcÎ3 (1, 2, 2)− 48m3

c Î3 (1, 4, 1)

−16mcÎ
[0,1]
3 (2, 3, 1)− 16mcÎ

[1,0]
3 (2, 3, 1)− 16m3

c Î
[0,1]
3 (3, 2, 2)

−8m3
c Î

[1,0]
3 (3, 2, 2) + 8mcÎ

[1,1]
3 (3, 2, 2)− 8mcÎ5 (1, 2, 2)

+48m3
c Î5 (1, 4, 1) + 16mcÎ

[0,1]
5 (2, 3, 1) + 16mcÎ

[1,0]
5 (2, 3, 1)

+16m3
c Î

[0,1]
5 (3, 2, 2) + 8m3

c Î
[1,0]
5 (3, 2, 2)− 8mcÎ

[1,1]
5 (3, 2, 2) ,

where

Î [i,j]
n (a, b, c) =

(
M2

1

)i(
M2

2

)j di

d
(
M2

1

)i dj

d
(
M2

2

)j [(M2
1

)i(
M2

2

)j
În (a, b, c)

]
.
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