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We show that for N = 1 supersymmetric Yang–Mills theory, it is pos-
sible to build an off-shell nilpotent BRST and anti-BRST algebra in terms
of a BRST superspace formalism. This is based on the introduction of the
basic fields of the quantized theory together with an auxiliary real field via
the lowest components of the superfield components of a superYang–Mills
connection. Here, the associated supercurvature is constrained by horizon-
tality conditions as in ordinary Yang–Mills theory. We also show how the
off-shell BRST-invariant quantum action can be constructed starting from
a gauge-fixed superaction.
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1. Introduction

It is well known that the quantization of globally supersymmetric gauge
theories has been considerably studied a long time ago. Several approaches
have been proposed with various methods in order to perform the quantiza-
tion of such theories (for a review, see e.g. Ref. [1] and references therein).

In the component field formalism, the supersymmetry algebra achieved
without auxiliary fields closes only on-shell. This can be explained by
the fact that the supersymmetry transformations of the models are real-
ized nonlinearly and, therefore, the main problem affecting such theories
is linked to its algebraic structure which involves equations of motion and
field-dependent gauge transformations. This gives rise to an infinite dimen-
sional algebra, even if auxiliary fields can be introduced to put the formal-
ism off-shell [2]. To avoid these difficulties, in Ref. [3] the construction of
a generalized BRST operator has been proposed by collecting together all
the symmetries forming the theory, namely ordinary BRST, supersymme-
tries and translations. According to this procedure, the role of the auxiliary
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fields is covered by the external sources coupled to the nonlinear variations
of the quantum fields. This approach has been already successfully applied
to supersymmetric [4, 5], ordinary [6] gauge field theories as well as to non-
gauge field theories [7]. Let us mention that in the Wess–Zumino model,
it is only with auxiliary fields that one can obtain a tensor calculus (for a
review, see e.g. Ref. [8] and references therein).

Another possibility to solve the problem of the quantization of theories
with on-shell algebra is to introduce the Batalin–Vilkovisky (BV) formalism.
The BV formalism is a very general covariant Lagrangian approach which
overcomes the need of closed classical algebra by a suitable construction of
BRST operator. The construction is realized by introducing a set of the so-
called antifields besides the fields occurring in the theory. The elimination
of these antifields at the quantum level via a gauge-fixing procedure leads to
the quantum theory in which effective BRST transformations are nilpotent
only on-shell. Let us note, that the BV approach can be used to obtain
the on-shell BRST, invariant gauge fixed action for N = 1 supersymmetric
Yang–Mills theory in four dimensions without requiring the set of auxiliary
fields [10].

Another interesting approach with infinite number of auxiliary fields has
been developed in the context of harmonic superspace [11]. In this frame-
work, quantization of supersymmetric theories has been discussed for various
supersymmetries [12].

On the other hand, it is also known that the extension of spacetime
with two ordinary anticommuting coordinates to a (4, 2)-dimensional super-
space [13] leads in Yang–Mills-type theories to incorporate the gauge fields,
the ghost and anti-ghost fields into a natural gauge superconnection, see
also Ref. [14] and references therein. In such a superspace formalism, the
BRST and anti-BRST transformations are derived systematically from the
horizontality conditions imposed on the supercurvature.

Let us note that the natural geometrical way to derive the BRST struc-
ture of general gauge theories is to work, in the same spirit as in Yang–Mills
type theories, by using the superconnection formalism. Within this frame-
work and in contrast to what is done in Yang–Mills theories, all superfield
components of the supercurvature cannot be constrained through horizon-
tality conditions. This is a consequence of the fact that the gauge theories
we consider are reducible and/or open. It is the consistency of the Bianchi
identities which is guaranteed by the remaining superfield components of the
supercurvature. Their lowest components allow the introduction of auxil-
iary fields. These, together with the fields given by the lowest components of
the superfield components of the superconnection, represent the basic fields
of the quantized gauge theory. The off-shell nilpotency of the BRST and
anti-BRST transformations of these fields is automatically ensured, thanks



Geometry and Off-shell Nilpotency for N = 1 Supersymmetric Yang–Mills . . . 1957

to the structure equations and the Bianchi identities. The BRST and anti-
BRST operators are related, as usual, to the partial derivatives with respect
to the two anticommuting coordinates of the superspace. Essentially, the
introduction of the auxiliary fields gives rise to the construction of the off-
shell BRST-invariant quantum action. As shown in Ref. [15] for the case of
non-Abelian BF theory where the classical gauge algebra is reducible and
in Ref. [16] for the case of the simple supergravity where the classical gauge
algebra is open, the superspace formalism has been used in order to real-
ize the BRST structure of such theories. It leads to recast all the fields
in geometrical way and to introduce auxiliary fields ensuring the off-shell
invariance of the quantum action.

Our main aim in this paper consists in applying this formalism for dis-
cussing the off-shell nilpotent version of the BRST and anti-BRST transfor-
mations for global N = 1, 4D supersymmetric Yang–Mills theory where the
classical gauge algebra is open [8, 17]. Let us mention that in Refs. [15, 16]
the superspace formalism has been applied successfully to theories with lo-
cal symmetry, while in the present work, we are interested in applying this
formalism to a global supersymmetry. The classical action for the N = 1
supersymmetric Yang–Mills in four dimensions is given by [17]

S0 =

∫
dx4Tr

(
−1

4FµνF
µν − λγµDµλ

)
, (1)

where ‘Tr’ denotes the trace over the gauge algebra, (Aµ, λ) is the gauge
multiplet, the field strength is Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] and Dµ =
∂µ + [Aµ, ] is the covariant derivative. By construction, in addition to the
ordinary Yang–Mills symmetry, action (1) is invariant under the supersym-
metry transformations

δξAµ = iξγµλ+ iξγµλ ,

δξλ = σµνFµνξ , (2)

where σµν ≡ 1
2 [γ

µ, γν ] and ξ is a spin 1/2 valued infinitesimal supersymmetry
parameter.

In the following, we shall call the superspace obtained by enlarging space-
time with two ordinary anticommuting coordinates BRST superspace, in or-
der to distinguish it from the superspace of supersymmetric theories. Let us
recall that a full off-shell structure of any supersymmetric field theory most
naturally exhibits itself in superspace, provided the superfield formulation
of the theory in terms of unconstrained superfields, is available. The BRST
superspace formalism presented here permits us to derive the off-shell nilpo-
tent BRST and anti-BRST algebra of quantized N = 1, 4D supersymmetric
Yang–Mills theory. In particular, it gives another possibility leading to the
minimal set of auxiliary fields in such theory.
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Our paper is organized as follows: In Section 2, the BRST superspace
approach and horizontality conditions for N = 1, 4D supersymmetric Yang–
Mills theory are discussed. We also show how the various fields of such
theory and their off-shell nilpotent BRST and anti-BRST transformations
can be determined via a BRST superspace formalism. The construction of
the BRST-invariant quantum action for N = 1 super Yang–Mills theory in
terms of this off-shell structure is described in Section 3. Section 4 is devoted
to concluding remarks.

2. Off-shell nilpotent BRST algebra

Let Φ be a super Yang–Mills connection on a (4, 2)-dimensional BRST
superspace with coordinates z = (zM ) = (xµ, θα), where (xµ)µ=1,...,4 are the
coordinates of the spacetime manifold and (θα)α=1,2

are ordinary anticom-
muting variables. Acting the exterior covariant superdifferential D on Φ,
we obtain the supercurvature Ω satisfying the structure equation, Ω =
dΦ + (1/2)[Φ,Φ], and the Bianchi identity, dΩ + [Φ,Ω] = 0. The super-
connection Φ as 1-superform on the BRST superspace can be written as

Φ = dzM
(
ΦiMIi + ΦµMPµ + ΦaMQa

)
, (3)

where {Ii}i=1,...,d=dimG and {Pµ, Qa}µ=1,...,4;a=1,...,4 are the generators of the
internal symmetry group (G) and the N = 1 supersymmetric group (SG)
respectively. They satisfy the following commutation relations

[Ii, Ij ] = fkijIk ,

[Ii, Pµ] = [Qa, Pµ] = [Pµ, Pν ] = 0 ,

[Qa, Qb] = 2(γµ)abPµ ,

[Ii, Qa] = b∗iQa , (4)

where {γµ}µ=1,...,4 are the Dirac matrices in the Weyl basis, b∗i = bi for
a = 1, 2 and b∗i = −bi for a = 3, 4 giving the representation of the inter-
nal symmetry of Qa and [, ] the graded Lie bracket. Let us mention that
the supersymmetric generators {Qa} are given in the Majorana representa-
tion [17, 18]. Note that the Grassmann degrees of the superfield components
of Φ are given by |ΦiM | = |Φ

µ
M | = m, |ΦaM | = m+1 (mod 2), where m = |zM |

(m = 0 for M = µ and m = 1 for M = α), since Φ is an even 1-superform.
However, we assign to the anticommuting coordinates θ1 and θ2 the

ghost numbers (−1) and (+1) respectively, and ghost number zero for an
even quantity: either a coordinate, a superform or a generator. These rules
permit us to determine the ghost numbers of the superfields (Φiµ, Φνµ, Φaµ,
Φi1, Φi2, Φν1 , Φν2 , Φa1, Φa2) which are given by (0, 0, 0,+1,−1,+1,−1,+1,−1).
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Upon expressing the supercurvature Ω as

Ω = 1
2dz

N ∧dzMΩMN = 1
2dz

N ∧dzM
(
Ωi
MNIi +Ωµ

MNPµ +Ωa
MNQa

)
, (5)

we find from the structure equation

Ωµν = ∂µΦν − ∂νΦµ + [Φµ, Φν ] , (6a)
Ωµα = ∂µΦα − ∂αΦµ + [Φµ, Φα] , (6b)
Ωαβ = ∂αΦβ + ∂βΦα + [Φα, Φβ] . (6c)

Similarly, the Bianchi identity becomes

DµΩνκ +DκΩµν +DνΩκµ = 0 , (7a)
DαΩµν −DνΩµα +DµΩνα = 0 , (7b)
DαΩβγ +DβΩαγ +DγΩαβ = 0 , (7c)
DµΩαβ −DαΩµβ −DβΩµα = 0 , (7d)

where DM = ∂M +[ΦM , .] is theM covariant superderivative. Now, we shall
search for the constraints to the supercurvature Ω in which the consistency
with the Bianchi identities (7) is ensured. This requirement ensures then
the off-shell nilpotency of the BRST and anti-BRST algebra. The full set of
supercurvature constraints turns out to be given by

Ωµα = 0 , Ωαβ = 0 . (8)

It is easy to check the consistency of this set of supercurvature constraints
through an analysis of the Bianchi identities. Indeed, we remark that identi-
ties (7c) and (7d) are automatically satisfied because of the constraints (8),
while identities (7a) and (7b) yield further restrictions on supercurvature Ω

Ωκ
µν = 0 , Ωa

µν = 0 . (9)

At this point, let us mention that the consistency of the horizontability
conditions (8) and (9) with the Bianchi identities (7), as we will see later,
guarantees automatically the off-shell nilpotency of the BRST and anti-
BRST transformations on all the fields belonging toN = 1 super Yang–Mills
theory.

Now, in order to derive the off-shell BRST structure of N = 1 super
Yang–Mills theory using the above BRST superspace formalism, it is nec-
essary to give the geometrical interpretation of the fields occurring in the
quantization of such theory. Besides the gauge potential Φiµ| = Aiµ, there
exists the superpartner Φia| = λia of Aµ and an auxiliary real field Φi| = Λi
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which are introduced via the field redefinitions Φai = −1
4(γ

µ)ab[Qb, Φ
i
µ] and

Φi = 1
4δ
a
b [Qa, Φ

bi], respectively. The components Φνµ| and Φ
a
µ| are identified

to zero. Note that the symbol “|” indicates that the superfield is evaluated
at θα = 0.

Furthermore, we introduce the following: Φi1| = ci1 is the ghost for Yang–
Mills symmetry, Φi2| = ci2 is the anti-ghost of ci1, Bi = ∂1Φ

i
2| is the associated

auxiliary field, Φa1| = χa1 is the supersymmetric ghost, Φa2| = χa2, is the
anti-ghost of χa1, Ga = ∂1Φ

a
2| is the associated auxiliary field, Φµ1| = ξµ1 is the

translation symmetry ghost, Φµ2| = ξ
µ
2 , is the anti-ghost of ξ

µ
1 and Eµ = ∂1Φ

µ
2|

is the associated auxiliary field. Let us mention that the symmetry ghosts
and anti-ghosts χaα are commuting fields, while the others ciα and ξµα are
anticommuting.

The action of the N = 1 supersymmetric generators {Pµ, Qa} on these
fields is given by

[Pµ, X] = ∂µX ,[
Qa, A

i
µ

]
= −(γµ)abλbi ,[

Qa, λ
bi
]

= −1
2(σ

µν)baF
i
µν + δbaΛ

i ,[
Qa, c

i
α

]
= (γµ)abχ

b
αA

i
µ ,[

Qa, Λ
i
]
= (γµ)abDµλ

bi ,[
Qa, F

i
µν

]
= (γµ)ab(Dνλ)

bi − (γν)ab(Dµλ)
bi , (10)

where X is any field of the theory.
It is worthwhile to mention that we are interested in our present investi-

gation on the global supersymmetric transformations, so that the parameters
of the N = 1 supersymmetric and translation groups must be space-time
constant, i.e.

∂µχ
a
α = 0 , ∂µξ

ν
α = 0 . (11)

Using the above identifications with (11) and inserting the constraints (8)
and (9) into Eqs. (6) and (7b), we obtain

∂αΦ
i
µ| = (Dµcα)

i − ξνα
[
Pν , A

i
µ

]
− χaα

[
Qa, A

i
µ

]
,

∂αΦ
i
β| + ∂βΦ

i
α| = − [cα, cβ]

i − ξνα
[
Pν , c

i
β

]
− χaα

[
Qa, c

i
β

]
−ξνβ

[
Pν , c

i
α

]
− χaβ

[
Qa, c

i
α

]
,

∂αΦ
a
β| + ∂βΦ

a
α| = 0 ,

∂αΦ
µ
β| + ∂βΦ

µ
α| = −2χ

a
α(γ

µ)abχ
b
β ,

∂αΩ
i
µν| = −

[
cα, F

i
µν

]
− ξτα

[
Pτ , F

i
µν

]
− χaα

[
Qa, F

i
µν

]
,
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∂αΦ
ai
| = 1

4(γ
µ)ab

[
Qb, ∂αΦ

i
µ|

]
,

∂αΦ
i
| = −1

4(δ
a
b )
[
Qa, ∂αΦ

bi
|

]
. (12)

We also realize the usual identifications: Qα(X|) = ∂αX|, where X is any
superfield and Q = Q1 (Q = Q2) is the BRST (anti-BRST) operator. Insert-
ing Eq. (10) into (12), and evaluating these at θα = 0, we find the following
BRST transformations

QAiµ = (Dµc)
i − ξν∂νAiµ + χγµλ

i ,

Qλia = −f ijkc jλka − ξµ∂µλia + χaΛ
i + 1

2 (χσ
µν)a F

i
µν ,

Qci = −1
2f

i
jkc

jck − ξµ∂µci + χγuχAiµ ,

Qξµ = −χγuχ ,
QΛi = −f ijkckΛj − ξρ∂ρΛi − χγµDµλ

i ,

QF iµν = −f ijkckF jµν − ξρ∂ρF iµν − χa
{
(γµ)ab(Dνλ)

bi − (γν)ab(Dµλ)
bi
}
,

Qχa = 0 , Qci = Bi , QBi = 0 , Qξ
µ
= Eµ ,

QEµ = 0 , Qχa = Ga , QGa = 0 , (13)

and also the anti-BRST transformations, which can be derived from (13) by
the following mirror symmetry of the ghost numbers given by : X → X if
X = Aiµ, λ

i
a, Λ

i; X → X if X = Q, ci, Bi, ξµ, Eµ, χa, Ga and X = X, where

Bi +B
i
= −f ijkckc j − ξ

ν
∂νc

i − ξµ∂µci − χγµχAiµ − χγµχAiµ , (14)

Eµ + E
µ

= −2χγµχ , Ga +G
a
= 0 . (15)

Let us note that the introduction of an auxiliary real field Λi besides the fields
present in quantized N = 1 super Yang–Mills theory in four-dimensions,
guarantees automatically the off-shell nilpotency of the {Q,Q} algebra and
then makes easier, as we will see in the next section, the gauge-fixing process.

3. Quantum action

In the present section, we show how to construct in the context of our
procedure a BRST-invariant quantum action for N = 1 super Yang–Mills
theory as the lowest component of a quantum superaction. For this purpose,
we choose the following gauge-fixing superaction

Ssgf =

∫
d4xLsgf ,

Lsgf = (∂1Φ2)(∂
µΦµ) + (∂µΦ2)(∂1Φµ) + (∂1Φ2)(∂1Φ2) . (16)
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Let us recall that similar gauge-fixing superaction was used in Refs. [19–21].
We note first that in the case of Yang–Mills theory, the superaction involves
a Lorentz gauge [22] given by

∂µΦ
µ
| = 0 . (17)

In the case of super Yang–Mills theory, we shall choose a supersymmetric
gauge-fixing which is the extension of the Lorentz gauge. This gauge fixing
can be obtained from (17) by using the following substitution

Φµ → Φ̃µ = Φµ + [∂µΦ
a, Qa] . (18)

Now, it is easy to see that the gauge-fixing superaction (16) can be written
in the following form

Ssgf =

∫
d4x

[
(∂1Φ2)

(
∂µΦ̃µ

)
+ (∂µΦ2)

(
∂1Φ̃µ

)]
. (19)

To determine the gauge-fixing action Sgf as the lowest component of the
gauge-fixing superaction Sgf = Ssgf|, we impose the following rules

Tr(ImIn) = δmn ,

Tr ([Qa, Qb]) = 2(γµ)ab∂µ ,

Tr
(
P 2
)

= 0 . (20)

These rules permit us to compute the trace of each term in (19). Indeed,
from (20), it is easy to put the gauge-fixing action Sgf in the form

Sgf = Ssgf| =

∫
d4x
[
B∂µAµ + 2b∗jG

(
γµ∂µ2λ

j
)

+(∂µc) {Dµc+ ξν∂νAµ + χγµλ}

−2b∗j (∂µχ) γν∂ν∂µ
{
f jikλ

ick + ξτ∂τλ
j − 1

2χσ
τνF jτν − χΛj

}]
. (21)

On the other hand, the presence of the extrafield breaks the invariance
of the classical action (1). In fact, the only terms which may contribute to
the Q-variation of the classical action S0 are those containing the extrafield
Λi. This follows from the fact that the BRST transformations up to terms
Λi represent the N = 1 super Yang–Mills transformations expressed à la
BRST. A simple calculation with the help of the BRST transformations
(13) leads to

QS0 = χaΛi (γµ)ab

(
Dµλ

b
)
i
. (22)
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Thus, the classical action S0 is no BRST-invariant, and in order to find the
BRST-invariant extension Sinv of the classical action, we shall add to S0 a
term S̃0 so that

Q
(
S0 + S̃0

)
= 0 . (23)

We remark that S̃0 is the part of the extended classical action related to the
auxiliary field Λi and is given by

S̃0 = −1
2Λ

iΛi . (24)

Then, it is quite easy to show that Q(S0) = −Q(S̃0) by a direct calculation
with the help of the transformations (13).

Having found the BRST-invariant extended action Sinv, we now write the
full off-shell BRST-invariant quantum action Sq by adding to theQ-invariant
action, Sinv = S0 + S̃0, the Q-invariant gauge-fixing action Sgf

Sq = S0 + S̃0 + Sgf . (25)

It is worth noting that the quantum action (25) allows us to see that the
auxiliary field Λi does not propagate, as its equation of motion is a constraint

δSgf
δΛi

= −Λi + 2b∗i (χ̃γ
µ∂µ2χ) = 0 . (26)

Thus, the essential role of the nondynamical auxiliary field Λi is to close the
BRST and anti-BRST algebra off-shell.

The elimination of the auxiliary field Λi by means of its equation of
motion (26) leads to the same gauge-fixed theory with on-shell nilpotent
BRST transformations obtained in the context of BV formalism [10] as well
as in the framework of the superfibre bundle approach [19].

Moreover, in our formalism, we have also introduced an anti-BRST op-
erator Q and it is important to realize that both the BRST symmetry and
anti-BRST symmetry can be taken into account on an equal footing. To
this end, we simply use the fact that there is a complete duality, with re-
spect to the mirror symmetry of the ghost number, between the Q and
Q-transformations. So, the Q-variation of the classical action S0 is given by

QS0 = χaΛi (γµ)ab

(
Dµλ

b
)
i
. (27)

Using, however, the Q-transformations of the auxiliary field (see Eqs. (13)
with the mirror symmetry), we obtain that the Q-invariant action Sinv =
S0 + S0 is also Q-invariant. Furthermore, the Q-gauge-fixing action can be
also written as in Yang–Mills theories in Q-form. Therefore, the full off-
shell BRST-invariant quantum action Sq = S0 + S̃0 + Sgf is also an off-shell
anti-BRST-invariant quantum action.
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4. Conclusion

In the present paper, we have developed a BRST superspace formalism
in order to perform the quantization of the four-dimensional N = 1 super-
symmetric Yang–Mills theory as a model where the classical gauge algebra
is not closed. In this geometrical framework, our construction is entirely
based on the possibility of introducing ab initio a set of fields through a su-
per Yang–Mills connection. The latter represents the gauge fields and their
associated ghost and anti-ghost fields occurring in such theory, whereas the
extrafield coming from the superconnection via the supersymmetric trans-
formations is required to achieve the off-shell nilpotency of the BRST and
anti-BRST operators. Let us note that for a local symmetry, the minimal
set of auxiliary fields is introduced by the supercurvature, while for our case
of global symmetry, the auxiliary real field is introduced via the superYang–
Mills connection.

Furthermore, we have performed a direct construction of the BRST in-
variant gauge fixed action forN = 1 , 4D supersymmetric Yang–Mills theory
in analogy with what is realized in BF theories [15] and simple supergrav-
ity [16]. The obtained quantum action allows us to see that the extrafield
enjoys the auxiliary freedom. The elimination of this auxiliary field using
its equation of motion permits us to recover the standard quantum action
with the on-shell nilpotent BRST symmetry [10]. By using the mirror sym-
metry between the BRST and anti-BRST transformations, we can see that
the BRST-invariant extended classical action is also anti-BRST-invariant.
Therefore, the full quantum action is BRST and anti-BRST invariant, since
the gauge-fixing action can be written as in the Yang–Mills case in BRST as
well as anti-BRST exact form, due to the off-shell nilpotency of the BRST—
anti-BRST algebra.

Finally, we should mention that the BRST superspace formalism repre-
sents the natural arena where the fields and their off-shell nilpotent BRST
and anti-BRST transformations for gauge theories can be found. This is not
only the case of Yang–Mills-type theories, arbitrary gauge theories may be
also treated in this framework. Indeed, such formalism was applied to several
interesting theories with local symmetry such as non-Abelian BF theory [15]
and simple supergravity [16]. In the present work, this formalism has been
applied successfully to the theory with a global supersymmetry. The off-shell
nilpotency is naturally implemented through the introduction of auxiliary
field required for the consistency of the BRST superspace geometry. Thus,
it would be a very nice endeavor to use this basic idea to study the structure
of auxiliary field in other gauge theories.
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