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In this paper, a new 3D chaotic system with five nonlinearities is intro-
duced. The basic behaviors of the system are investigated. The dynamic
evolution of the system is analyzed by bifurcation diagram, Lyapunov expo-
nents, phase diagram. It is shown that the system generates chaos via Hopf
bifurcation and period-doubling bifurcation with the parameters change.
The coexisting attractors including point, periodic, chaotic attractors is
presented. It is found that the system is abound in coexisting double ho-
mologous attractors with respect to different initial values.
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1. Introduction

Chaos is an important nonlinear phenomena which is characterized by
the initial value sensitivity. Due to its outstanding contributions in com-
plexity science, chaos is widely regarded as the third great revolution of the
20th century occurred in physics. Since Lorenz found the first chaotic attrac-
tor for atmospheric convection [1], chaos has remained to be an academic
interest to many scientists.

As the broad application prospects of chaos in engineering, the chaos
generation or chaotification has been an important research topic for years.
Numerous chaotic systems were constantly presented based on continuous
autonomous differential equations with quadratic nonlinearities, such as
Rössler system, Rucklidge system, Genesio system, Sprott system, Chen
system, Lü system, no-equilibria chaotic systems, hyperchaos systems, etc.
[2–13]. With further research, scholars discovered that some simple chaotic
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systems can perform coexisting attractors for different initial conditions.
Leipnik and Newton earlier introduced a chaotic system with coexisting two
strange attractors in separate regions of phase space [14]. In 2004, Liu
et al. found a Lorenz-type chaotic system which generates not only four-
scroll chaotic attractors but also coexisting chaotic attractors [15]. In 2010,
Dadras et al. introduced a smooth autonomous system with coexisting sym-
metric chaotic attractors [16]. In 2013, Sprott et al. analyzed a six-term
chaotic system with only one stable equilibrium with a coexistence of point,
periodic and chaotic attractors [17]. Li and Sprott presented a 3D differen-
tial system with four quadratic nonlinearities, which displays five coexisting
attractors with one limit cycle, two stable points and two strange attrac-
tors at some special parameters [18]. Recently, the systems with coexisting
attractors have been of increasing concern in academic field for its poten-
tial engineering applications [19–21]. In many nonlinear systems, coexisting
attractors with independent domains of attraction are often unavoidable.
Investigation of the coexisting attractors and its internal mechanism is of
significant importance for revealing the dynamic evolution of the system.

Although many chaotic systems have been established, but only in a
handful of chaotic systems multiple independent attractors coexist. The
chaotic systems with coexisting attractors have many key issues that need
further study. Motivated by these views, we propose a new 3D dissipative
chaotic system with coexisting attractors. The system has eight terms and
five quadratic nonlinearities. Some basic properties of the system are an-
alyzed. The dynamic evolution of the system is presented by bifurcation
diagram, Lyapunov exponents, phase diagram. Importantly, the coexisting
attractors include point, periodic, chaotic attractors. It is found that the
system is abound in coexisting double homologous attractors corresponding
to different initial conditions.

2. A new 3D chaotic system

A new chaotic system proposed in this letter is described as a set of three
first-order, autonomous, ordinary differential equations as follows

ẋ = ax− yz ,
ẏ = −by + xz ,

ż = −cz + (x+ y)2 ,
(1)

where x, y, z are state variables, a > 0, b > 0, c > 0 are all real parameters.
From the composition of the equations, system (1) has eight terms and five
quadratic nonlinearities. It is not identical with the existing chaotic system
from the homeomorphic topological theory [22, 23]. For two vector fields
f(x), g(x) ∈ Rn, satisfying dynamical systems ẋ = f(x) and ẏ = f(y)
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with x, y ∈ Rn, if there exists a diffeomorphism h on Rn such that f(x) =
M−1(x)g(h(x)), where M(x) is the Jacobian of h at the point x, then the
two dynamical systems are said to be smoothly equivalent. Suppose that
ẋ = f(x) and ẏ = f(y) are smoothly equivalent, then the Jacobians at
their equilibria x0 and y0 = h(x0) have the same characteristic equations
and eigenvalues. It is obvious that two dynamical systems are nonequivalent
smoothly if they have different number of equilibria. Based on these points,
it can be concluded that system (1) is nonequivalent smoothly to the Lorenz
system, Chen system, etc.

As the parameters vary, system (1) performs complex dynamical behav-
iors. Of particular importance is that multiple coexisting attractors with
respect to different initial conditions is abound in system (1). The chaotic at-
tractor of system (1) is revealed by selecting parameters a = 6, b = −12, c =
−5 and initial value x0 = (1, 1, 1) as shown in Fig. 1. The chaotic char-
acteristic of the attractor is determined by its largest Lyapunov exponent
LE1 = 0.9952 > 0 and Poincaré map on the crossing section z = 20.
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Fig. 1. (Color on-line) The chaotic attractor of system (1): (a) x–y–z; (b) y–z;
(c) Poincaré section; (d) Lyapunov exponents.
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3. Analysis of the equilibria

System (1) has three equilibria by solving the equations ẋ = ẏ = ż = 0,
which are given as

O(0, 0, 0) ,

O1

(
a1/4b3/4c1/2

a1/2 + b1/2
,
a3/4b1/4c1/2

a1/2 + b1/2
, a1/2b1/2

)
,

O2

(
−a

1/4b3/4c1/2

a1/2 + b1/2
,−a

3/4b1/4c1/2

a1/2 + b1/2
, a1/2b1/2

)
.

It is easy to verify that O is an unstable point since it has a positive real
eigenvalue λ1 = a > 0 of the corresponding characteristic equation.

The Jacobian matrix of system (1) at Oi (i = 1, 2) is

J =

 a −z −y
z −b x

2(x+ y) 2(x+ y) −c

 .

By using |λI − J | = 0, the corresponding characteristic equation of J is
obtained as

λ3 + (b+ c− a)λ2 +
c(a+ b)

(
b1/2 − a1/2

)
a1/2 + b1/2

λ+ 4abc = 0 . (2)

According to the Routh–Hurwitz criterion, Oi is a stable point as long as
the following conditions are satisfied{

a > 0, b > 0, c > 0, b > a ,

(a+ b)(b− a+ c)
(
b1/2 − a1/2

)
> 4ab

(
a1/2 + b1/2

)
.

Next, we will show the existence of the Hopf bifurcation of system (1)
at equilibria Oi. Suppose b = 4a, then Eq. (2) can be rewritten as

λ3 + (3a+ c)λ2 + 5
3acλ+ 16a2c = 0 . (3)

Assume λ = σi, σ > 0 is a pure imaginary root of Eq. (3), then

(σi)3 + (3a+ c)(σi)2 + 5
3ac(σi) + 16a2c = 0 .

It follows that {
3σ2 − 5ac = 0 ,

(3a+ c)σ2 − 16a2c = 0 ,
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then we have  c0 =
33

5
a ,

σ0 =
√

11a .

Since a > 0, then there exists a constant σ > 0 such that λ = σi is really a
root of Eq. (3). Differentiating Eq. (3) with respect to c, one has

dλ

dc
= − 3λ2 + 5aλ+ 48a2

9λ2 + (18a+ 6c)λ+ 5ac
,

then
Re

(
dλ

dc

)
|c=c0,λ=σ0i = − 275

5158
a2 < 0 .

It is clear that the transversality condition is met. Therefore, system (1)
bifurcation occurs at points O1, O2 with two limit cycles branching from the
O1, O2 when parameter c decreases beyond the critical value c = c0 according
to the Kuznetso’s Hopf bifurcation theory [23]. The stability and direction
of the bifurcating periodic solutions can be determined by calculating the
first Lyapunov coefficient. Let a = 1, b = 4a = 4, then the periodic solutions
of system (1) with c = c0 = 33a/5 = 33/5 are shown in Fig. 2. It is obvious
that system (1) occurs independent of Hopf bifurcations at equilibria O1, O2.
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Fig. 2. (Color on-line) The limit cycles of system (1) with c = 33/5: (a) x–y–z;
(b) time series.

4. Dynamic evolution and coexisting attractors

In this section, we will investigate the complex dynamical behaviors of
system (1) intuitively. The evolution of the system status including stability,
periodicity, chaos is presented by bifurcation diagrams, Lyapunov exponents,
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and phase portraits. The coexisting attractors i.e. multiple attractors with
their own domains of attraction yield simultaneously with respect to different
initial values are analyzed. The numerical calculations are presented by
applying the fourth-order Runge–Kutta integrator with a fixed step size
∆t = 0.01 and an absolute error bound of 105 at each step. The iteration
time of the integrator is from t = 0 to t = 300. It is also verified numerically
that the phase portraits and time series do not essentially change as the
iteration time t > 300 (e.g. t = 106). The Lyapunov exponents are obtained
by using the classic Wolf method [24]. All the simulation graphics are carried
out by Matlab software platform.

4.1. For b = 10, c = 4 and varying a

Suppose b = 10, c = 4, then the bifurcation diagrams of the variable
y versus a ∈ [0, 8] from initial values (1, 1, 1) (red) and (−1,−1, 1) (blue)
are obtained as shown in Fig. 3 (a). The Lyapunov exponents of system (1)
versus a ∈ [0, 8] from initial value (1, 1, 1) are shown in Fig. 3 (b). It can
be observed that system (1) performs stable, periodic, chaotic states as a
changes. For some values of a, system (1) two attractors coexist with respect
to initial values (1, 1, 1), (−1,−1, 1). It can be more clearly demonstrated
by the phase diagram as follows.
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Fig. 3. (Color on-line) The bifurcation diagrams and Lyapunov exponents of sys-
tem (1) with b = 10, c = 4 and a ∈ [0, 8].

For 0 ≤ a < 1.5595, system (1) has coexisting point attractors. Let
a = 1, then system (1) has stable equilibria P1(2.7021, 0.8545, 3.1623) and
P2(−2.7021,−0.8545, 3.1623) with the same eigenvalues λ1 = −12.2014,
λ2,3 = −0.3993 ± 3.5991i. The trajectories generated from initial val-
ues (1, 1, 1) (red) and (−1,−1, 1) (blue) eventually tend to the equilibria
A1, A2 as shown in Fig. 4 (a). It means that in system (1) two sta-
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ble point attractors coexist. For a = 1.5595, system (1) has equilibria
Q1(2.8493, 1.1252, 3.9491) and Q2(−2.8493,−1.1252, 3.9491) with the same
eigenvalues λ1 = −12.4405, λ2,3 = ±4.4785i. It can be verified that sys-
tem (1) shows double Hopf bifurcations at Q1 and Q2 with the generation
of limit cycles. For 1.5595 ≤ a ≤ 2.1, system (1) has coexisting periodic
attractors. Let a = 1.7, the coexisting periodic attractors generate from ini-
tial values (1, 1, 1) (red) and (−1,−1, 1) (blue) are shown in Fig. 4 (b). For
2.2 ≤ a ≤ 2.6, system (1) has only one 1-periodic attractor from some initial
value as shown in Fig. 4 (c). For a = 2.7, 2.8, system (1) has one 2-periodic
attractor as shown in Fig. 4 (d). For 2.9 ≤ a ≤ 5.9, system (1) has one
double-wing chaotic attractor as shown in Fig. 4 (e)–(f). For a = 6, sys-
tem (1) two chaotic attractors coexist with respect to initial values (1, 1, 1)
(red) and (−1,−1, 1) (blue) as shown in Fig. 4 (g). Their largest Lyapunov
exponents are both LE = 0.3637 > 0. The chaotic attractors have similar
structure and feature. For a = 6.1, 6.2, system (1) two 2-periodic attractors
coexist with respect to initial values (1, 1, 1) (red) and (−1,−1, 1) (blue) as
shown in Fig. 4 (h). For 6.3 ≤ a ≤ 6.5, system (1) yields two 1-periodic
attractors from initial values (1, 1, 1) (red), (−1,−1, 1) (blue) as shown in
Fig. 4 (i). For 6.6 ≤ a ≤ 8, system (1) has only one periodic attractor as
shown in Fig. 4 (j).
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Fig. 4. (Color on-line) The phase plane of system (1): (a) a= 1; (b) a= 1.7; (c)
a=2.4; (d) a=2.8; (e) a=3; (f) a=5.9; (g) a=6; (h) a=6.2; (i) a=6.3; (j) a=6.8.
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4.2. For a = 6, c = 4 and varying b

Suppose a = 6, c = 4, then the bifurcation diagrams of the variable y
versus b ∈ [10, 25] from initial values (1, 1, 1) (red) and (−1,−1, 1) (blue)
are shown in Fig. 5 (a). The Lyapunov exponents of system (1) versus
b ∈ [10, 25] from initial value (1, 1, 1) is shown in Fig. 5 (b). It is clear
that system (1) has only one chaotic attractor with 10 ≤ b ≤ 20.5. When
20.6 ≤ b ≤ 21.2, system (1) two chaotic attractors coexist according to the
bifurcation diagram. Select b = 20.8, the coexisting chaotic attractors with
respect to initial values (1, 1, 1) (red) and (−1,−1, 1) (blue) are shown in
Fig. 6 (a). When 21.3 ≤ b ≤ 25, system (1) has coexisting periodic attractors
as shown in Fig. 6 (b).
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Fig. 5. (Color on-line) The bifurcation diagrams and Lyapunov exponents of sys-
tem (1) with a = 6, c = 4 and b ∈ [10, 25].
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Fig. 6. (Color on-line) The phase plane of system (1): (a) b = 20.8; (b) a = 22.8.
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4.3. For a = 6, b = 10 and varying c

Suppose a = 6, b = 10, then the bifurcation diagrams of the variable y
versus c ∈ (0, 6) from initial values (1, 1, 1) (red) and (−1,−1, 1) (blue) are
shown in Fig. 7 (a). The Lyapunov exponents of system (1) versus c ∈ (0, 6)

0 1 2 3 4 5 6
−2

0

2

4

6

8

10

c

y

(a) (b)

Fig. 7. (Color on-line) The bifurcation diagrams and Lyapunov exponents of sys-
tem (1) with a = 6, b = 10 and c ∈ (0, 6).
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Fig. 8. (Color on-line) The phase plane of system (1): (a) c = 3.8; (b) c = 3.9;
(c) c = 4.1; (d) c = 5.
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from initial value (1, 1, 1) are shown in Fig. 7 (b). From the bifurcation
diagram, we obtain that system (1) has a chaotic attractor with 0 < c ≤ 3.8.
The chaotic attractor of system (1) with c = 3.8 is shown in Fig. 8 (a).
When c = 3.9, system (1) has a periodic attractor as shown in Fig. 8 (b).
When c = 4, 1, system (1) has coexisting chaotic attractors corresponding
to initial values (1, 1, 1) (red) and (−1,−1, 1) (blue) as shown in Fig. 8 (c).
When 4.2 ≤ c ≤ 5.7, system (1) two periodic attractors coexist as shown in
Fig. 8 (d). When 5.8 ≤ c < 6, system (1) has only one periodic attractor.

From the above analysis, we can easily conclude that system (1) performs
chaotic motion in a wide range of parameters. The coexisting attractors in-
cluding point, periodic, and chaotic attractors are prevalent in system (1).
The dynamic behaviors of system (1) are not only dependent on the param-
eters, but also related to the initial conditions.

5. Conclusions

This paper presented a new 3D chaotic system with five quadratic non-
linearities. The basic behaviors of the system are analyzed. The dynamic
evolution of the system is analyzed by bifurcation diagram, Lyapunov ex-
ponents and phase diagram. It is shown that the system generated chaotic
attractors in a wide range of parameters. The coexisting attractors including
point, periodic, and chaotic attractors of the system are investigated. Nowa-
days, the chaotic systems with coexisting attractors are of great theoretical
and practical significance. More related studies of the coexisting attractors
will be shown in our future paper.
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