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The Statistical Model of the Early Stage, SMES, describes a transition
between confined and deconfined phases of strongly interacting matter cre-
ated in nucleus–nucleus collisions. The model was formulated in the late
1990s for central Pb+Pb collisions at the CERN SPS energies. It predicted
several signals of the transition (onset of deconfinement) which were later
observed by the NA49 experiment. The grand canonical ensemble was used
to calculate entropy and strangeness production. This approximation is
valid for reactions with mean multiplicities of particles carrying conserved
charges being significantly larger than one. Recent results of NA61/SHINE
on hadron production in inelastic p + p interactions suggest that the de-
confinement may also take place in these reactions. However, in this case,
mean multiplicity of particles with non-zero strange charge is smaller than
one. Thus, for the modelling of p + p interactions, the exact strangeness
conservation has to be implemented in the SMES. This extension of the
SMES is presented in the paper.
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1. Introduction

Strongly interacting matter at sufficiently high energy density is pre-
dicted to exist in a phase of quasi-free quarks and gluons, the quark–gluon
plasma (QGP). Relativistic nucleus–nucleus (A + A) collisions provide a
unique opportunity to check this prediction and study properties of the
transition to the QGP as well as the QGP itself. This is because the system
created in A+A collisions is close to (at least local) equilibrium. The con-
clusion is based on the success of statistical and hydrodynamical models of
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particle production at high energies (see e.g. Ref. [1]). Consequently, prop-
erties of the system (matter) can be characterized by its equation of state
which should include different phases and transitions between them. It is
important to note that nowadays there is no dynamical understanding of the
observed equilibrium properties of particle production in A+A collisions.

With increasing collision energy, the energy density of matter created at
the early stage of A + A collisions increases. Thus, at a sufficiently high
collision energy, the matter is expected to be created in the QGP phase.
The beginning of the QGP creation with increasing collision energy is re-
ferred to as the onset of deconfinement. The experimental search for the
onset of deconfinement in central Pb+Pb collisions was performed by the
NA49 experiment at the Super Proton Synchrotron (SPS) of the European
Organization for Nuclear Research (CERN) about 15 years ago. The study
was motivated [2] by predictions of the Statistical Model of the Early Stage
(SMES) [3] of A + A collisions. According to the model, the onset of de-
confinement in central A + A collisions should lead to rapid changes of the
energy dependence of several hadron production properties, all located in a
common energy domain. In particular, a non-monotonic dependence of the
strangeness to entropy ratio as a function of the collision energy (the horn)
was predicted [3] as an important signal of the transition. This and other
predictions of the SMES were confirmed by NA49 [4, 5]. Moreover, following
results from the Relativistic Heavy Ion Collider at the Brookhaven National
Laboratory and the Large Hadron Collider (LHC) at CERN agree with the
NA49 results and their interpretation (see Ref. [6]). The SMES predictions
and the experimental evidence for the onset of deconfinement are presented
in recent reviews [7].

The SMES is probably the simplest model of the onset of deconfinement.
This leads to a number of advantages and disadvantages. In particular, the
SMES is frequently criticized for being based on simple assumptions which
cannot be justified within popular dynamical approaches to A+A collisions.

In this paper, we concentrate on a single aspect of the SMES which con-
cerns the finite size effects for strange hadron production. The SMES predic-
tions for strangeness production were calculated within the grand canonical
ensemble (GCE). This approximation is valid for central Pb+Pb collisions
at the SPS energies in which mean multiplicity of particles with non-zero
strange charge is significantly larger than one. However, this is not the case
for inelastic p+p interactions at the SPS energies. Here, the exact strangeness
conservation has to be imposed using the canonical ensemble (CE) [8–11].

Recently, the NA61/SHINE Collaboration at the CERN SPS published
results on hadron production in p+p interactions [12, 13]. They suggest that
in these reactions, the strangeness to entropy ratio (experimentally replaced
by the K+ to π+ ratio) also changes rapidly in the SPS energy range, see
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Fig. 1. However, the ratio and its energy dependence are significantly differ-
ent from the horn measured in central Pb+Pb collisions. Can these results
be explained by the onset of deconfinement as modelled by the SMES? The
first step towards an answer to this question is taken in this paper by in-
troducing the exact strangeness conservation. In order to allow for a direct
comparison with the previously published predictions, the remaining SMES
assumptions, parameters and notations are kept unchanged.
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Fig. 1. The horn structure in the energy dependence of the K+/π+ ratio is in-
terpreted as evidence for the onset of deconfinement located at low CERN SPS
energies. The structure was first discovered by NA49 in central Pb+Pb collisions.
Surprisingly, its shadow is visible in inelastic p+ p interactions as indicated by the
new NA61/SHINE data.

The paper is organized as follows. In Sec. 2, the GCE formulation of
the SMES is briefly recapitulated. The exact strangeness conservation is
introduced in the SMES in Sec. 3 and results for p + p interactions and
collisions of small nuclei are presented. A summary in Sec. 4 closes the
article.

2. The SMES model in brief

The SMES model was formulated almost 20 years ago. Its basic as-
sumptions, parameters and results are summarized in this section. Together
with the notation used in the original paper they are here kept unchanged as
much as possible in order to allow for a direct comparison with the previously
published results.
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The SMES assumes that the matter created at the early stage of collisions
has zero conserved charges. Consequently, its properties are entirely defined
by the available energy and the volume in which production takes place. In
central A + A collisions, this volume is chosen as the Lorentz contracted
volume occupied by the colliding nucleons (participant nucleons) from a
single nucleus

V =
4πr30Ap/3√
sNN/2mN

, (1)

where mN is the nucleon mass,
√
sNN is the center-of-mass energy of the

nucleon pair, Ap is the number of participant nucleons from a single nucleus.
The r0 parameter is taken to be 1.30 fm in order to fit the mean baryon
density in the nucleus, ρ0 = 0.11 fm−3.

Only a fraction, η, of the total energy in A+A collisions is transformed
into the energy of new degrees of freedom created at the early stage. This
is because a part of the energy is carried by the net baryon number. The
released (inelastic) energy is expressed as

E = η (
√
sNN − 2mN ) Ap , (2)

where the parameter η is assumed to be independent of the collision energy
and the system size. The value of η used for numerical calculations is 0.67 [3].

Assumptions (1) and (2) with η = 1 correspond to the Landau hydro-
dynamical model [14]. Similarly to this model, in the SMES, we do not
consider dynamical mechanisms leading to a fast thermalization of the mat-
ter. The SMES model postulates that the creation of new particles at the
early stage of collision is a statistical process, namely, all microscopic states
allowed by conservation laws are equally probable.

The SMES predictions for the pion multiplicities are based on the as-
sumption that the entropy generated at the early stage of collision is (ap-
proximately) conserved during the expansion of produced matter. It was
indeed observed that the dissipative effects estimated by the ratio of the
shear viscosity to the entropy density are small for the strongly interacting
matter, especially in a region of the deconfinement transition (see, e.g., [15]
and references therein). It should be also noted that particle interactions
play rather different role for the equilibrium properties (e.g., the equation of
state) and the kinetic coefficients (e.g., the shear viscosity). This is clearly
demonstrated by a simple example of the hard balls system [16]. The hard
core particle radius r leads to small corrections to the ideal gas equation
of state due to the excluded volume effects, but the shear viscosity as it
behaves as ∝ r−2 is thus strongly dependent on r.
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The elementary particles of strong interactions are quarks and gluons.
The deconfined state is considered to be composed of u, d and s quarks
and the corresponding anti-quarks each with internal number of degrees of
freedom equal to 6 (3 color states and 2 spin states). The contribution of c,
b and t quarks is neglected due to their large masses. The internal number
of degrees of freedom for gluons is 16 (8 colour states and 2 spin states).
The masses of gluons and non-strange (anti)quarks are taken to be 0. The
strange (anti)quark mass is taken to be 175 MeV [3]. The properties of
equilibrated matter are characterized by an equation of state (EoS). For the
case of quarks and gluons, the bag model EoS is used [17], i.e., the ideal gas
EoS modified by a bag constant B. This equilibrium state of quarks and
gluons is called the Quark–Gluon Plasma or Q-state.

The SMES uses an effective parametrization of the confined hadron state,
denoted as W state. The non-strange degrees of freedom which dominate
the entropy production are taken to be massless bosons. Their internal
number of degrees of freedom is taken to be 16 i.e., about 3 times lower
than the internal number of effective degrees of freedom in the QGP. The
mass of strange degrees of freedom is assumed to be 500 MeV, equal to the
kaon mass. The internal number of strange degrees of freedom is assumed to
be 14. For theW state, the ideal gas EoS is selected. Clearly, this description
of the confined state should only be treated as an effective parametrization.
The numerical values of the parameters are fixed by fitting A + A data at
the AGS, see for details Ref. [3].

The model assumes that the maximum entropy state is always created
at the early stage of A+A collisions. In the model with two different states
(W and Q), the form of maximum entropy state changes with the collision
energy. The regions in which the equilibrium state is in the form of a pure
W or a pure Q state are separated by the region in which both states coexist
(the mixed phase). The maximum entropy condition is equivalent to the as-
sumption of the first order phase transitions with the Gibbs criterion for the
mixed phase (see Appendix B in Ref. [3]). Namely, at a given temperature
T , the system occupies a pure phase W or Q whose pressure is larger, the
mixed phase is formed if both pressures are equal pW = pQ. The transition
temperature between the W and Q phases is assumed to be Tc = 200 MeV.

Using the assumptions and parameters defined above, predictions of the
SMES can be calculated. The early stage energy density reads

ε ≡ E

V
=
ηρ0

(√
sNN − 2mN

)√
sNN

2mN
. (3)
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The pressure and energy density functions in the W phase and Q phase
are equal to:

pW (T ) =
π2gW
90

T 4 +
gsW
2π2

∞∫
0

dk k4

3
(
k2 +m2

W

)1/2 exp
[
−
(
k2+m2

W

)1/2
T

]
,

(4)

εW (T ) =
π2gW
30

T 4 +
gsW
2π2

∞∫
0

dk k2
(
k2 +m2

W

)1/2
exp

[
−
(
k2+m2

W

)1/2
T

]
,

(5)

pQ(T ) =
π2gQ
90

T 4
c +

gsQ
2π2

∞∫
0

dk k4

3
(
k2 +m2

Q

)1/2 exp
−
(
k2+m2

Q

)1/2
T

−B ,
(6)

εQ(T ) =
π2gQ
30

T 4 +
gsQ
2π2

∞∫
0

dk k2
(
k2 +m2

Q

)1/2
exp

−
(
k2+m2

Q

)1/2
T

+B .

(7)

The strange particle contribution to thermodynamical functions (4)–(7) are
taken within the Boltzmann approximation. This simplification is important
for the CE treatment which will be discussed in the next section. Note that in
Ref. [3], the Fermi distribution withm∗Q = 175 MeV was used for the strange
quarks. In order to minimize differences to the previous results, we choose
here a larger value of mQ = 216.5 MeV which leads to the same number of
strange quarks at the phase transition temperature (Tc = 200 MeV)
∞∫
0

k2dk exp
(
−
√
k2 +m2

Q

/
Tc

)
=

∞∫
0

k2dk
[
exp

(√
k2 +m∗2Q

/
Tc

)
+ 1
]−1

.

(8)

Then, the bag constant B = 570 MeV/fm3 is calculated using the Gibbs
criterion of equal pressures

pW (Tc) = pQ(Tc) . (9)

The entropy densities in the pure phases (i =W,Q) read

si(T ) =
pi(T ) + εi(T )

T
. (10)
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In the mixed phase, the W and Q phases coexist. The fraction of volume
occupied by the Q phase is denoted as ξ. The energy and entropy densities
in the mixed phase are

εmix(Tc) = ξ εQ(Tc) + (1− ξ) εW (Tc) , (11)
smix(Tc) = ξ sQ(Tc) + (1− ξ) sW (Tc) . (12)

The temperature T and pressure p are shown as a functions of the colli-
sion energy in Fig. 2 left and right, respectively. The mixed phase starts at
collision energy √sNN,1 and ends at √sNN,2:

√
sNN,1 = 7.42 GeV ,

√
sNN,2 = 10.83 GeV . (13)

The equivalence of the Gibbs criterion and the maximum entropy condition
is illustrated in Fig. 3 (left), where the ratios Ri = si/sQ are presented for
i =W , mix, and Q.
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Fig. 2. The temperature (left) and pressure (right) of the matter created at the
early stage of A+A collisions as a function of collision energy.

The number density of the sum of strange and anti-strange particles in
the GCE can be calculated as

nsW (T ) =
gsW
2π2

∞∫
0

dk k2 exp

[
−
(
k2 +m2

W

)1/2
T

]
, (14)

nsQ(T ) =
gsQ
2π2

∞∫
0

dk k2 exp

−
(
k2 +m2

Q

)1/2
T

 , (15)

nsmix(ξ) = ξ nsQ(Tc) + (1− ξ)nsW (Tc) . (16)

In Fig. 3 (right), the strangeness to entropy ratio, ns/s, is shown as a func-
tion of the collision energy.
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Fig. 3. Left: The ratio of entropy densities si/sQ with i referring to the W (solid
line), Q (horizontal solid line), and mixed (dashed line) phases, as a function of
collision energy. The full circles correspond to the beginning and end of the mixed
phase given by Eq. (13). Right: The strangeness to entropy ratio ns/s as a function
of collision energy.

3. Phase transition with exact strangeness conservation

In p + p interactions at the CERN SPS energies, mean multiplicity of
produced strange and anti-strange particles is smaller than one. Thus, in
this case the exact strangeness conservation should be taken into account.
In the statistical models, this is done within the CE formulation. The CE
partition function of strange particles assures an equal number of strange
and anti-strange charges, Ns = Ns, in each microscopic state of the system.
For the W and Q phases, it has a similar form and reads

Zce(T, V, λ) =

∞∑
Ns=0

∞∑
Ns=0

zNs

Ns!

zNs

Ns!
δ(Ns −Ns)

=
1

2π

2π∫
0

dφ exp
[
z
(
eiφ + e−iφ

)]
= I0(2z) , (17)

where

z = zW,Q = λ1
2 V n

s
W,Q(T ) . (18)

The auxiliary λ parameter in Eq. (18) is introduced to calculate the total
strangeness density in the CE

n
s(CE)
W,Q (T, V ) =

1

V

[
∂ lnZce
∂λ

]
λ=1

= nsW,Q(T )
I1

[
V nsW,Q(T )

]
I0

[
V nsW,Q(T )

] . (19)
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The ratio of Bessel functions I1 and I0 in Eq. (19) quantifies the strangeness
suppression (relatively to the GCE yield) due to the conservation of net
strangeness in each microscopic state of the CE.

In order to take into account the exact strangeness conservation for ther-
modynamical functions, it is convenient to re-write them as following:

p
(CE)
W (T, V ) =

π2gW
90

T 4 + T n
s(CE)
W (T, V ) , (20)

ε
(CE)
W (T, V ) =

π2gW
30

T 4 + ωW (T, V )n
s(CE)
W (T, V ) , (21)

p
(CE)
Q (T, V ) =

π2gQ
90

T 4 + T n
s(CE)
Q (T, V )−B , (22)

ε
(CE)
Q (T, V ) =

π2gQ
30

T 4 + ωQ(T )n
s(CE)
Q (T, V ) +B , (23)

where ns(CE)
W,Q (T, V ) is given by Eq. (19), and ωW,Q(T ) is average energy of

strange particle

ωW,Q(T ) =

∫∞
0 dk k2

(
k2 +m2

W,Q

)1/2
exp

[
−
(
k2 +m2

W,Q

)1/2/
T

]
∫∞
0 dk k2 exp

[
−
(
k2 +m2

W,Q

)1/2/
T

] ,

(24)

with mW taken in the W phase, and mQ in the Q phase. The entropy
density is given by Eq. (10).

For Ap � 1, the system volume (1) is large, and V nsW,Q � 1. Then

one finds that I1
[
V nsW,Q

]
/I0

[
V nsW,Q

]
→ 1 and, therefore, ns(CE)

W,Q → nsW,Q.
The results for the CE and GCE become equivalent in this thermodynamical
limit, and Eqs. (20)–(23) coincide with Eqs. (4)–(7).

In the mixed phase, Eq. (19) should be replaced by

ns,mix
W,Q (T, V, ξ) = nsW,Q(T )

I1[X]

I0[X]
, (25)

where

X = X(T, V, ξ) = ξ V nsQ(T ) + (1− ξ)V nsW (T ) (26)

is the total GCE number of strange and anti-strange particles (both hadrons
and quarks) in the mixed phase. This is because the CE condition of zero
net strangeness in the mixed phase should be obeyed by the whole system
and not by its phases separately.
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At each
√
sNN , one calculates V and ε according to Eqs. (1) and (3),

respectively. The CE Eqs. (19)–(23) are used to obtain results for the pure
W and Q phases. In the mixed phase, the temperature T and the parameter
ξ are obtained by solving the equations:

ξ εmix
Q [T,X] + (1− ξ) εmix

W [T,X] = ε(
√
sNN ) , (27)

pmix
Q [T,X] = pmix

W [T,X] , (28)

where εmix
W,Q and pmix

W,Q are given by Eqs. (20)–(23) with ns,mix
W,Q (25) instead

of ns,(CE)
W,Q (19).
The collision energy √sNN,1 and temperature T1, where the mixed phase

starts, and √sNN,2 and T2, where the mixed phase ends, are obtained as
solutions of Eqs. (27), (28) for ξ = 0 and ξ = 1, respectively. One finds:

T1 = 203.4 MeV ,
√
sNN,1 = 7.20 GeV , (29)

T2 = 202.9 MeV ,
√
sNN,2 = 10.75 GeV . (30)

The collision energy dependence of T and p obtained within the CE is
shown by the solid lines in Fig. 4 left and right, respectively. The dashed
lines in Fig. 4 correspond to the GCE results presented in Fig. 2. The CE and
GCE curves are similar. A slightly larger value of T in the CE than in the
GCE is needed to compensate the CE suppression of energy density. Note
that ε as a function of

√
sNN is given by Eq. (3) and, thus, it is independent

of the system size. The entropy density is given by Eq. (10) in terms of p,
ε, and T . Therefore, the entropy density s is weakly affected by the exact
strangeness conservation imposed in the CE.
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Fig. 4. The CE temperature (left) and pressure (right) as a function of collision
energy are shown by the solid lines. The dashed lines correspond to the GCE result
presented in Fig. 2.
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The Gibbs criterion (28) used in the CE is again equivalent to the max-
imum entropy condition. This is illustrated in Fig. 5 (left), where the ratios
Ri = (si/sQ)CE calculated in the CE are presented for entropies sH , sQ and
smix for Ap = 1.

Figure 5 (right) presents energy dependence of the strangeness to entropy
ratio, ns/s, calculated within the CE for Ap = 1, 3 and 5 as well as the result
for the GCE (Ap � 1).
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Fig. 5. Left: The CE (Ap = 1) ratio of entropy densities si/sQ with i referring to
the W (solid line), Q (horizontal solid line), and mixed (dashed line) phases as a
function of the collision energy. The full circles correspond to the beginning and
end of the mixed phase given by Eq. (29) and Eq. (30), respectively. Right: The
CE strangeness to entropy ratio as a function of the collision energy. The solid line
corresponds to Ap = 1 and the dashed line to Ap � 1 which coincides with the
GCE results presented in Fig. 3 (right). The dash–dotted and dotted lines show
the CE results for Ap = 3 and 5, respectively.

In Fig. 6, the ratio

r ≡ [ns/s]CE

[ns/s]GCE
(31)

is shown as a function of Ap at three collision energies in the vicinity of the
transition region. It is seen that the CE suppression of the strangeness to
entropy ratio depends strongly on the number of participants 2Ap. With
increasing Ap the CE suppression decreases. At

√
sNN > 10 GeV, the

suppression parameter (31) is close to unity already for Ap > 10. The
CE suppression increases with decreasing collision energy, when the total
number of strange particles is small. This is indicated by the dotted line in
Fig. 6 which is calculated for collisions at

√
sNN = 5 GeV.
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Fig. 6. The CE strangeness to entropy ratio divided by the corresponding ratio in
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the beginning of the mixed phase
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Finally, the strangeness to entropy ratio calculated for central Pb+Pb
collisions (the GCE result) and inelastic p + p interactions (the CE with
Ap = 1 result) is plotted in Fig. 7 as a function of collision energy up to
the LHC energies. The left plot shows the two ratios separately, whereas
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Fig. 7. Left: Collision energy dependence of the strangeness to entropy ratio calcu-
lated within the SMES for central Pb+Pb collisions (the GCE result) and inelastic
p+ p interactions (the CE result for Ap = 1). The ratio is plotted up to the LHC
energies. Right: The ratio of strangeness to entropy ratios calculated for central
Pb+Pb collisions and inelastic p + p interactions with the SMES as a function of
collision energy.
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the right one presents their ratio. The energy dependence predicted by the
SMES is only qualitatively similar to the measured one (Fig. 1). Clearly,
the SMES, the simplest model of the onset of deconfinement, has to be
significantly modified in order to reach a quantitative agreement with the
data.

4. Summary

This paper introduces the exact strangeness conservation in the Statis-
tical Model of the Early Stage [3] of nucleus–nucleus collisions. This allows
to calculate the energy dependence of the strangeness to entropy ratio for
collisions of protons and small nuclei at the CERN SPS energies. The ex-
tension of the model is motivated by the recent results of the NA61/SHINE
experiment at the CERN SPS on hadron production in inelastic p+ p inter-
actions [13], which suggest that the deconfinement may take place also in
this reaction.

The CE treatment of the strangeness production leads to the well known
effect — the total number of strange and anti-strange particles is reduced in
comparison to that obtained within the GCE at the same values of volume
and energy density. However, the calculations show only small modifica-
tions of the system temperature, pressure, and entropy density. Thus, the
strangeness to entropy ratio is significantly reduced in small systems. The
smaller the collision energy, the smaller is the total number of strange parti-
cles, and thus, the stronger is the CE strangeness suppression. In the region
of the mixed phase,

√
sNN = 7–11 GeV, the strangeness to entropy ratio in

p + p interactions is found to be approximately two times smaller than in
central Pb+Pb collisions. Note that the CE suppression becomes quite small
already for central collisions of intermediate size nuclei and it is negligible
for central Pb+Pb collisions. The calculated collision energy dependence of
the strangeness to entropy ratio in p+ p interactions is qualitatively similar
to the one measured by the NA61/SHINE Collaboration [12, 13] for the K+

to π+ ratio (see Fig. 1). However, a quantitative comparison between the
model and the data requires further modifications of the model and thus
being beyond the scope of this paper.
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