
Vol. 46 (2015) ACTA PHYSICA POLONICA B No 10

EFFECTS OF A PULSATILE FLOW
AND AN ENDOSCOPE ON THE PERISTALTIC

TRANSPORT OF A NEWTONIAN FLUID

H. Rachid†, M.T. Ouazzani, M. Riahi

Department of Physics, Faculty of Sciences Ain Chock, University Hassan II
Maarif, Casablanca 5366, Morocco

(Received March 23, 2015; revised version received May 13, 2015)

This article analytically investigates the effect of pulsatile flow on the
peristaltic transport of a Newtonian fluid between two coaxial cylinders.
The inner tube is rigid and uniform and the outer tube has a sinusoidal
wave traveling down its wall. This transport is studied under low Reynolds
number and long wavelength approximations. The governing equations are
developed up to the second order in the Womersley number. We first ana-
lyzed the effects of the Womersley, the amplitude ratio and the radius ratio
on the pressure rise and on the frictional forces. The instantaneous me-
chanical efficiency of pumping phenomenon has been graphically presented
and the influence of physical parameters on this efficiency has been studied.
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1. Introduction

Peristaltic pumping is a mechanism of fluid transport in a flexible tube
by a progressive wave of contraction or expansion from a region of lower
pressure to higher pressure. These movements of the walls propel the fluid.
Peristalsis is one of the major mechanisms for fluid in many biological sys-
tems. It is an automatic and vital process that moves food through the
digestive tract. The blood flow in the human body is another major appli-
cation of peristaltic pumping. The description of the phenomenon associated
to this transport has been studied by many authors. The first investigation
was by Latham [1] and Jaffrin and Shapiro [2]. Later, the non-Newtonian
effects of fluids without endoscope [3–6] or with endoscope [7–15] was the
aim of the majority of studies. In all these works, the authors supposed
that the flow in the wave frame is steady and the associated phenomenon
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is due to the dynamic interaction between the flow of fluid and the motion
in space of the wall of the tube. But when the fluid is pulsatile, the flow
in the wave frame becomes unsteady. Despite its importance, due to the
complexity of the time-dependent problems, we find in the literature just a
few articles which attempted to study the effect of pulsatile flow on peri-
staltic transport and without endoscope. For example, Segesser et al. [16]
studied the peristaltic effect and the pulsatile flow of an Arthropump. Usha
and Prema [17] analyzed interaction of pulsatile and peristaltic transport
induced flows of a particle–fluid suspension. Kumar and Prassad [18] ana-
lyzed the peristaltic and pulsatile flow of a couple stress fluid through porous
medium in a channel bounded by flexible walls. Srivastava [19] studied the
interaction of peristaltic transport with pulsatile flow of a Newtonian viscous
incompressible fluid in a circular cylindrical tube. Afifi and Gad studied the
interaction of peristaltic flow with pulsatile flow for a magneto-fluid [20] or
for a viscous incompressible fluid through a porous medium [21]. Gad [22]
investigates the effect of Hall currents on interaction of pulsatile and peri-
staltic transport induced flows of a particle–fluid suspension. In the last four
works, the authors supposed that the frequency of the traveling wave and
that of the imposed pressure gradient are equal. In addition, they analyzed
only the effect of interest parameters on the velocity in the time independent
case (steady flow).

Therefore, the aim of the present paper is to analytically investigate the
effect of pulsatile flow on peristaltic transport between two coaxial tubes.
The inner tube is rigid and uniform and the outer tube has sinusoidal waves
traveling down its walls. Here, we suppose that the imposed pressure gradi-
ent is a function periodic in time whose frequency is different from that of
the traveling wave of the outer tube. The problem is simplified under long
wavelength and low Reynolds number approximations to obtain the expres-
sions of the instantaneous pressure gradient. The influence of pulsatile flow
and the effect of different physical parameters on the instantaneous pres-
sure rise, frictional forces and on the instantaneous mechanical efficiency of
pumping are shown graphically and discussed.

2. Formulation and analysis

We consider the unsteady peristaltic transport of a Newtonian fluid
flowing between two coaxial cylinders. The geometry of the walls surfaces
(cf. Fig. 1) is:

r̄1 = a1 , (1)

r̄2 = H̄
(
Z̄, t̄

)
= a2 + b cos

(
2π

λ

(
Z̄ − ct̄

))
, (2)
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where a1 and a2 are the radii of the inner and outer tubes at inlet, b is the
wave amplitude of the outer tube, λ is the wavelength, c is the propagation
velocity, t̄ is the time. We choose a cylindrical coordinate system (R̄, Z̄)
where the Z̄-axis lies along the centerline of the inner and the outer tubes,
and the R̄-axis is transverse to it.

Fig. 1. Geometry of the problem.

The equations of motion of the flow in the gap between the inner and
the outer tubes are:

ρ

[
∂Ū

∂t̄
+ Ū

∂Ū

∂R̄
+ W̄

∂Ū

∂Z̄

]
= − ∂p̄

∂R̄
+ µ

∂

∂R̄

(
1

R̄

∂
(
R̄Ū
)

∂R̄

)
+ µ

∂2Ū

∂Z̄2
, (3)

ρ

[
∂W̄

∂t̄
+ Ū

∂W̄

∂R̄
+ W̄

∂W̄

∂Z̄

]
= − ∂p̄

∂Z̄
+ µ

1

R̄

∂

∂R̄

(
R̄
∂W̄

∂R̄

)
+ µ

∂2W̄

∂Z̄2
, (4)

∂Ū

∂R̄
+
Ū

R̄
+
∂W̄

∂Z̄
= 0 , (5)

where ρ is the fluid density, Ū and W̄ are the velocity components in the
laboratory frame and p̄ is the pressure.

The system coordinates in the laboratory frame and the wave frame are
related through

z̄ = Z̄ − ct̄ ; r̄ = R̄ (6)

and the velocity components are also related by

ū(r̄, z̄) = Ū
(
R̄, Z̄ − ct̄

)
; w̄(r̄, z̄) = W̄

(
R̄, Z̄ − ct̄

)
− c , (7)

where ū and w̄ are the velocity components in the wave frame.
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The boundary conditions are:

ū = 0 , w̄ = −c at r̄ = r̄1 , (8)

ū = −cdr̄2

dz̄
, w̄ = −c at r̄ = r̄2 . (9)

For carrying out further analysis, we introduce the following dimension-
less parameters:

z =
z̄

λ
; r1 = ε =

r̄1

a2
; r2 =

r̄2

a2
; t =

t̄

T0
; u =

λū

a2c
;

w =
w̄

c
; p =

a2
2p̄

µλc
; Q =

Q̄

πca2
2

; δ =
a2

λ
; β =

ρa2
2

µT0
;

Re =
ρca2

µ
; ε =

a1

a2
; φ =

b

a2
, (10)

where T0 is the characteristic time related to the imposed periodic pressure
gradient, δ is the dimensionless wave number, β is the Womersley number,
Re is the Reynolds number, ε is the radius ratio and φ is the amplitude ratio
of the outer tube, where 0 < φ < 1− ε.

After defining the dimensionless stream function ψ(r, z) given by

u(r, z) = −1

r

∂ψ

∂z
; w(r, z) =

1

r

∂ψ

∂r
, (11)

and using the above non-dimensional quantities, the continuity equation is
satisfied and the equations of motion (5) become:

−δ2β
∂

∂t

(
1

r

∂ψ

∂z

)
+Reδ

3

(
1

r

∂ψ

∂z

∂

∂r
− 1

r

∂ψ

∂r

∂

∂z

)
1

r

∂ψ

∂z

= −∂p
∂r
− δ2 1

r

∂

∂r

(
r
∂

∂r

(
1

r

∂ψ

∂z

))
− δ4 ∂

∂z

(
∂

∂z

(
1

r

∂ψ

∂z

))
,

β
∂

∂t

(
1

r

∂ψ

∂r

)
−Reδ

(
1

r

∂ψ

∂z

∂

∂r
− 1

r

∂ψ

∂r

∂

∂z

)
1

r

∂ψ

∂r

= −∂p
∂z

+
1

r

∂

∂r

(
r
∂

∂r

(
1

r

∂ψ

∂r

))
+ δ2 ∂

∂z

(
∂

∂z

(
1

r

∂ψ

∂r

))
. (12)

3. Volume flow rate and boundary conditions

The volume rate of flow in the fixed coordinate system (R̄, Z̄) is given as:

Q̄
(
Z̄, t̄

)
= 2π

r̄2∫
r̄1

W̄
(
Z̄, t̄

)
R̄ dR̄ . (13)
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Substituting (6) and (7) in (13), we obtain

Q̄
(
Z̄, t̄

)
= q̄ (t̄ ) + πc

(
r̄2

2 − r̄2
1

)
, (14)

where

q̄ (t̄ ) = 2π

r̄2∫
r̄1

w̄ r̄ dr̄ (15)

is the volume flow rate in the moving coordinate system.
The space-mean flow over a wavelength is defined by

Q̄ (t̄ ) =
1

λ

λ∫
0

Q̄
(
Z̄, t̄

)
dZ̄ . (16)

Substituting (14) in (16), we find

Q̄ (t̄ ) = q̄ (t̄ ) + πca2
2

(
1 +

φ2

2
− ε2

)
. (17)

Using dimensionless variables, we obtain

θ(t) = q(t) +

(
1 +

φ2

2
− ε2

)
(18)

with

θ(t) =
Q̄ (t̄ )

πca2
2

, (19)

q(t) =
q̄ (t̄ )

πca2
2

= 2

r2∫
ε

∂ψ

∂r
dr = 2 [ψ(r2)− ψ(ε)] . (20)

The corresponding dimensionless boundary conditions in the wave frame
are given by:

ψ(ε) = 0 ;
1

r

∂ψ

∂r
|r=ε = −1 , (21)

ψ(r2) =
q(t)

2
;

1

r

∂ψ

∂r
|r=r2 = −1 . (22)

Under the assumptions of long wavelength approximation (i.e., λ� a2)
and low Reynolds number (i.e., Re → 0), Eqs. (12) can be reduced to:

∂p

∂r
= 0 ,

β
∂

∂t

(
1

r

∂ψ

∂r

)
= −∂p

∂z
+

1

r

∂

∂r

(
r
∂

∂r

(
1

r

∂ψ

∂r

))
(23)

and the boundary conditions are the same as given by Eqs. (21)–(22).
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4. Method of solution

In this work, we recall that the flow is unsteady even in the wave frame
analysis because of the existence of a pulsatile flow. We also assume that
the flow rate F (t) in this frame is given by

q(t) = q0 + βq1(t) , (24)

where q0 is the flow rate in the wave frame in the absence of the pulsatile
flow and q1(t) is a function of time of frequency ω2. Taking into account
this assumption, the characteristic time T0 mentioned in (10) is related to
the dimensional flow rate q̄(t) and is given by [23]

1

T0
= Max

∣∣∣∣ 1

q̄ (t̄ )

∂q̄ (t̄ )

∂t̄

∣∣∣∣ =
ω2

2π
. (25)

Therefore, we seek the solution of the problem under small Womersley
number β, we expand ψ and p in the following form:

ψ = ψ0 + β ψ1 + β2 ψ2 + . . . ,

p = p0 + β p1 + β2 p2 + . . . (26)

substituting (24) and (26) into (23) and (21)–(22), summing up the different
orders of solution, we obtain

∂p(z, t)

∂z
= 8


(
θ(t)−

∫ 1
0

(
r2

2 − ε2
)
dz +

(
r2

2 − ε2
))

ln
(
r2
ε

)
(
r2

2 − ε2
)2 − (r4

2 − ε4
)

ln
(
r2
ε

)


+β

2
(
r2

2 − ε2
)

+ 3
(
r4

2 − ε4
)

ln
(
r2
ε

)
− 4

3

(
r4

2 + ε4 + r2
2ε

2
)

ln
(
r2
ε

)2(
r2

2 − ε2
) [(

r2
2 − ε2

)2 − (r4
2 − ε4

)
ln
(
r2
ε

)]
 dθ(t)

dt
.

(27)

For β = 0, the pressure gradient (27) becomes the same as given in
Eqs. (3)–(8) by Hayat et al. [24] or by Mekheimer [25] where they take the
non-uniform parameter of the channel k = 0 and the velocity parameter of
endoscope V0 = 0.

5. The pumping characteristics

The instantaneous pressure rise ∆p(t) and frictional forces at the walls
of the inner and the outer tubes F (i)(t) and F (o)(t), in the non-dimensional
form, are given by
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∆p(t) =

1∫
0

∂p(z, t)

∂z
dz , (28)

F (o)(t) =

1∫
0

r2
2

(
−∂p(z, t)

dz

)
dz , (29)

F (i)(t) =

1∫
0

ε2

(
−∂p(z, t)

∂z

)
dz . (30)

6. Instantaneous mechanical efficiency of pumping

The mechanical efficiency is defined as the ratio between the average rate
per wavelength at which work is done by the moving fluid against a pressure
head and the average rate at which the walls do work on the fluid [26–28].

It is given by

E(t) =
Ps1 + Ps2
P1 + P2

, (31)

where P1 and P2 are the works provided by the walls of the inner and outer
tubes, respectively. Ps1 and Ps2 are the powers developed on the section s1

of abscissa Z1 = 0 and on the section s2 of abscissa Z2 = λ, respectively.
When we neglect the friction forces, the work P1 + P2 is given by

P1 + P2 =

∫
S1

~T1
~V dS1 +

∫
S2

~T2
~V dS2 , (32)

where ~T1 and ~T2 are the forces exercised by the walls (of lateral surfaces S1

of the inner tube and S2 of the outer tube) on the fluid. ~V is the vector
velocity.

In the fixed frame, we obtain P1 + P2 as

P1 + P2 = −2π

1∫
0

pwall (r2 − ε)
∂ (r2 − ε)

∂t
dZ , (33)

where pwall is the pressure on the walls.
The energy useful for the pumping of fluid Ps1 + Ps2 is defined as

Ps1 + Ps2 =

∫
s1

~f1
~V ds1 +

∫
s2

~f2
~V ds2 , (34)
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where ~f1 and ~f2 are the forces exercised on the fluid at the sections s1 and s2,
respectively. We find:

Ps1 + Ps2 = 2πp(0, t)

r2∫
ε

W (r, 0, t)r dr − 2πp(1, t)

r2∫
ε

W (r, 1, t)r dr (35)

or
Ps1 + Ps2 = π [ p(0, t)Q(0, t)− p(1, t)Q(1, t)] . (36)

The flow rate Q(Z, t) is periodic in the space, thus we obtain

Ps1 + Ps2 = −π∆p(t)Q(0, t) . (37)

The instantaneous mechanical efficiency becomes

E(t) =
∆P (t)Q(0, t)

2
∫ 1

0 Pwall (r2 − ε) ∂(r2−ε)
∂t dZ

. (38)

After simple integration, we find

E(t) =
−Q(0, t)∆p(t)

Ω
(
∆p(t)

[
r2

2(0)− ε2
]

+ F (o)(t) + F (i)(t) + 2I
) , (39)

where I =
∫ 1

0 εr2
∂p(z,t)
∂z dz, Ω = ω1

ω2
= T0 c

λ is the reduced frequency. Q(0, t)
is the flow rate in the fixed frame at Z = 0, and is given by

Q(0, t) = θ(t) + r2
2(0, t)−

(
1 +

φ2

2

)
. (40)

We notice that for ε = 0, Eq. (39) becomes the same Eq. (33) found by
Rachid and Ouazzani [29] where they take the Deborah number Db = 0.

7. Results and discussions

In this section we analyze the effects of the Womersley number β, the
amplitude ration φ and the radius ration ε on the pressure rise ∆p, frictional
forces F (i) and F (o) and on the instantaneous mechanical efficiency E(t). In
this investigation, the flow is unsteady even in the wave frame due to the
existence of an imposed pressure gradient variable in time. Here, we suppose
that the flow rate θ(t) is given by [29]

θ(t) = θ0 + β sin(2πt) . (41)
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7.1. Pressure rise

We notice that for β = 0, the flow is steady in the wave frame because
the flow rate θ is independent of time and Eq. (41) becomes θ = θ0. In this
case, the relations pressure rise flow rate ∆p–θ and frictional forces-flow rate
F–θ are straight lines. In addition, for ε = 0, we find the classical results
of peristaltic transport of a Newtonian fluid without endoscope [28]. The
results of Mekheimer [25] can be recovered when he takes V0 = 0. In Fig. 2
(curve D), we plot the pressure rise versus the flow rate for the steady case
and for φ = 0.4 and ε = 0.2.
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Fig. 2. Pressure rise ∆p versus flow rate θ for different values of β with φ = 0.4,
ε = 0.2 and θ0 = 0.2.

In the presence of pulsatile flow (β 6= 0), the flow becomes unsteady even
in the wave frame. In Fig. 2, we also plot the pressure rise ∆p versus the flow
rate θ for φ = 0.4, ε = 0.2, for a given value of the flow rate θ0 (abscissa of
one point of the curve D) and for different values of the Womersley number β.
We observe that ∆p becomes ellipses because of the existence of the term
dθ(t)/t in the expression of the pressure gradient (27) and the variation of
time in Eq. (41) which generates the variation of the flow rate θ(t). The
same figure shows that the lengths of the principal and of the minor axis of
the ellipses change in the direction of the principal axis with the increase
in β.

In Figs. 3 (a), (b) we plot the pressure rise ∆p versus flow rate θ for
different values of the amplitude ratio φ and the radius ratio ε, respectively,
for a given value of the flow rate θ0 and Womersley number β. These fig-
ures show that the distribution of ∆p is always ellipses whose length of
the minor axis increases with the increase in φ and ε with a change in the
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direction of the principal axis. In addition, these figures indicate that the
peristaltic pumping region (∆p > 0 and θ > 0) increases with increasing φ
and ε.
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Fig. 3. Pressure rise ∆p versus flow rate θ with β = 0.08 and θ0 = 0.2 for:
(a) different values of φ with ε = 0.2 (b) different values of ε with φ = 0.4.

In Fig. 4, we present the instantaneous pressure rise ∆p(t) versus time
for different values of the Womersley number β. This figure shows that for
β = 0, the pressure rise ∆p is constant but for β 6= 0 ∆p becomes periodic
and sinusoidal in time and the amplitude of the sinusoid increases with the
increase in β.
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Fig. 4. Instantaneous pressure rise ∆p(t) versus time t for different values of β with
φ = 0.4, ε = 0.2 and θ0 = 0.2.

For different values of φ and ε, the instantaneous pressure rise ∆p(t)
is plotted in Fig. 5. From this figure, it can be seen that ∆p(t) and its
amplitude increase together with increasing φ and ε.
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Fig. 5. Instantaneous pressure rise ∆p(t) versus time t corresponding to (a) differ-
ent values of φ with ε = 0.2, (b) different values of ε with φ = 0.4.

7.2. Frictional forces

In Figs. 6 (a), (b), we represent the frictional forces on the inner tube
F (i) and on the outer tube F (o), respectively, versus the flow rate θ for
different values of the Womersley β with φ = 0.4, ε = 0.2, θ0 = 0.2. These
figures show that F (i) and F (o) have an opposite behavior to the pressure
rise and the curves are also ellipses with the same remarks as in Fig. 2.
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Fig. 6. Frictional forces on the inner tube F (i) (a) and on the outer tube F (o) (b)
versus the flow rate θ for different values of β with φ = 0.4, ε = 0.2 and θ0 = 0.2.

Figs. 7–8 display the frictional forces F (i) and F (o) versus the flow rate θ
for different values of the amplitude ratio φ and the radius ratio ε, respec-
tively. These figures show that F (i) and F (o) have an opposite behavior to
the pressure rise ∆p with increasing φ and ε with the same observations as
in Figs. 3 (a), (b). In addition, Figs. 6–8 indicate that the frictional force
on the outer tube F (o) is greater than the frictional force on the inner tube
F (i) for the same values of the physical parameters.
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Fig. 7. Frictional forces on the inner tube F (i) (a) and on the outer tube F (o) (b)
versus the flow rate θ for different values of φ with β = 0.08, ε = 0.2 and θ0 = 0.2.
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Fig. 8. Frictional forces on the inner tube F (i) (a) and on the outer tube F (o) (b)
versus the flow rate θ for different values of ε with β = 0.08, φ = 0.4 and θ0 = 0.2.

7.3. Instantaneous mechanical efficiency

In Fig. 9, we display the instantaneous mechanical efficiency E(t) versus
time for different values of the reduced frequency Ω with β = 0.13, φ = 0.35,
ε = 0.2 and θ0 = 0.1. This figure indicates that for Ω = 1 (i.e. the frequency
of the peristaltic transport and that of the pulsatile flow are equal), the dis-
tribution of E(t) is periodic and sinusoidal. But for Ω 6= 1, E(t) remains
periodic but not sinusoidal. This figure also shows that there is a propor-
tional relationship between Ω and the number of spikes (for Ω ≥ 1) whose
amplitude decreases with the increase in Ω.

In order to analyze the effects of the other physical parameters on the
instantaneous mechanical efficiency E(t), we suppose that Ω = 1. Fig-
ure 10 describes the distribution of E(t) versus time for different values of
the Womersley number β. It is concluded that E(t) is always periodic whose
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Fig. 9. Instantaneous mechanical efficiency E(t) versus time t for different values
of Ω with β = 0.13, φ = 0.35, ε = 0.2 and θ0 = 0.1.

amplitude increases with increasing β. In addition, above a certain value of
β, the effect of the second frequency linked to the pulsatile flow (ω2 = 2π

T0
)

on E(t) appears clearly in the figure.
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Fig. 10. Instantaneous mechanical efficiency E(t) versus time t for different values
of β with Ω = 1, φ = 0.35, ε = 0.2 and θ0 = 0.1.

In Figs. 11–12, we plot the instantaneous mechanical efficiency E(t) ver-
sus time for different values of the amplitude ratio φ and the radius ratio ε,
respectively. From these figures, it is observed that the amplitude of E(t)
increases with increasing φ and ε.

Finally, we note that in this modeling, all these results can constitute a
control aid of the influence of pulsatile flow and the geometric effects on the
peristaltic pumping phenomenon.
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Fig. 11. Instantaneous mechanical efficiency E(t) versus time t for different values
of φ with Ω = 1, β = 0.13, ε = 0.2 and θ0 = 0.1.
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Fig. 12. Instantaneous mechanical efficiency E(t) versus time t for different values
of ε with Ω = 1, β = 0.13, φ = 0.35 and θ0 = 0.1.

8. Conclusions

In this investigation, we have analytically studied the interaction of pul-
satile flow with peristaltic transport of a Newtonian fluid when a rigid uni-
form endoscope is inserted in a tube. The problem is simplified under the
assumptions of long wavelength approximation and low Reynolds number.
The analytical solution is obtained by an asymptotic method in terms of
small Womersley number. The pressure rise, frictional forces and the in-
stantaneous mechanical efficiency are discussed with the physical parame-
ters, Womersley number β, the radius ratio ε and the amplitude ratio of the
outer tube φ.
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The graphical solutions have shown that:

1. The pressure rise ∆p and the frictional forces F (i) and F (o) versus
the flow rate θ are ellipses whose the principal and the median axis
increase with increasing the Womersley number β.

2. The peristaltic pumping region increase with the increase in amplitude
ratio φ and radius ratio ε.

3. The amplitude of the instantaneous pressure rise ∆p(t) increases with
the increase in β.

4. ∆p(t) and his amplitude increase with increasing φ and ε.

5. An increase in the reduced frequency causes an increase of the number
of spikes of the instantaneous mechanical efficiency E(t) and a decrease
of the amplitude of these spikes.

6. The amplitude of E(t) increases with increasing β where the frequency
of the linked to the pulsatile flow appears, in graph, above a certain
value of β.

7. The amplitude of E(t) increases with the increase in φ and ε.

8. For β = 0 (absence of pulsatile flow) and ε = 0 (without endoscope),
we found the classical results of Shapiro et al. [28].

9. For ε = 0, the results of Rachid and Ouazzani [29] can be recovered
when they take Db = 0.

10. For β = 0, we obtain the same pressure gradient (3–8) of Hayat et al.
[24] or of Mekheimer et al. [25] when they take k = 0 and V0 = 0.
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