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Hadron scattering processes involving low values for the fraction of the
momentum of the hadrons transfered to the partonic process require fac-
torization prescriptions other than collinear factorization. These admit
pdfs with resummed logarithms of this momentum fraction. One of their
characteristics is that they provide an explicit transverse momentum to
the parton, rendering it off-shell. Consequently, the exact definition and
calculation of the matrix element needs special attention. The program
AMP4HEF numerically evaluates multi-parton amplitudes and matrix ele-
ments with up to two of them off-shell.
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1. Introduction

Factorization formulas are at the basis of cross section calculations of
hadron collisions at high energy scattering experiments like the Large Hadron
Collider. Heuristically, they separate the partonic cross section, calculable
perturbatively within quantum chromodynamics (QCD), from parton den-
sity functions (pdfs) describing the colliding hadrons. The latter typically
cannot be calculated to the end, and need experimental input to be modeled.
Their dependence on some relevant energy scale, however, can be calculated
perturbatively within QCD.

For the calculation of processes within central rapidity regions, collinear
factorization is mostly applied, in which a fraction of the momentum of each
hadron, usually denoted by the letter “x”, is entering the partonic process as
the momentum of each of the initial-state partons. The original idea of the
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parton model is that it is actually these partons that scatter while carrying
those momentum fractions. The possibility of a systematic perturbative
approach within collinear factorization is well-established, and it is known
to be universal with respect to the content of the partonic cross section.

For events in non-central rapidity regions, one of the partons is carrying
far less energy than the other, that is the value of x is much smaller. In
this situation, other factorization formulas apply that allow for pdfs that
take into account the resummation of logarithms of the small value of x.
An example is the hybrid factorization of [1], which applies the so-called
high-energy factorization (HEF) [2, 3] with respect to one of the scattering
hadrons in dijet production. One of the features that distinguishes this for-
mula from collinear factorization is that one of the pdfs explicitly depends on
momentum in the transverse plane, that serves as the transverse momentum
of the parton entering the partonic process, rendering this momentum off-
shell. Consequently, the definition and calculation of the scattering ampli-
tude needs special attention, since simple application of standard Feynman
rules with off-shell kinematics does not lead to gauge invariant quantities. A
few approaches that lead to the same tree-level results have been developed
to deal with this situation [4–8].

The applicability of different factorization formulas is dictated by the
relative values of the relevant scales in the considered process. In forward
dijet production, these are the typical transverse momentum PT of a hard
jet, the transverse momentum kT of the small-x gluons, and the saturation
scale Qs, separating the linear regime from the non-linear regime of parton
saturation [9] for the evolution of the low-x pdf. The aforementioned HEF
is valid when Qs � kT ∼ PT, and the kT-dependent pdf is also called the
unintegrated pdf. When Qs ∼ kT � PT, the so-called transverse momentum
dependent (TMD) factorization [10] is valid, that is exactly in the region
where non-linear evolution effects are present. In this case, on-shell matrix
elements are used in combination with several unintegrated gluon distribu-
tions. The fact that this factorization formula involves a sum over several
pdfs that are associated with different color structures for the matrix el-
ements is an essential difference with, for example, collinear factorization.
In [11], a factorization formula was derived for forward dijet production
that is valid in both regimes, so for Qs . kT . PT. This formula requires
both features for the matrix elements, namely off-shellness and explicit color
structures.

2. Off-shell amplitudes from on-shell recursion

The foregoing highlights the need for control over matrix elements with
off-shell initial-state partons to the level of separately gauge invariant color
structures. In [11], the so-called color-ordered helicity amplitudes were
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applied. In case all partons are on-shell, these are known to be computable
efficiently using on-shell recursion [12, 13]. Recently, it has been shown that
also in the case of off-shell partons, the “on-shell” type of recursion can be
applied [14, 15]. These amplitudes still come in all helicities for the on-shell
partons. For the off-shell partons, the amplitudes take another argument
besides the momentum, namely the longitudinal momentum or direction,
that is (a fraction of) the momentum of the hadron from which the off-shell
parton is considered to originate. In general, momenta ki and directions pi
as arguments of an amplitude satisfy

kµ1 + kµ2 + · · ·+ kµn = 0 momentum conservation , (1)
p2

1 = p2
2 = · · · = p2

n = 0 light-likeness , (2)
p1 ·k1 = p2 ·k2 = · · · = pn ·kn = 0 eikonal condition , (3)

where we follow the convention that on-shell momenta are identical to the
associated directions. With the help of an auxiliary light-like four-vector qµ,
the momentum kµ can be decomposed in terms of its light-like direction pµ,
satisfying p·k = 0, and a transversal part, following

kµ = x(q)pµ − κ

2

〈p|γµ|q]
[pq]

− κ∗

2

〈q|γµ|p]
〈qp〉

, (4)

with
x(q) =

q ·k
q ·p

, κ =
〈q|k/|p]
〈qp〉

, κ∗ =
〈p|k/|q]

[pq]
. (5)

The coefficients κ and κ∗ can easily be shown to be independent of the
auxiliary momentum, and play, together with the spinors of the light-like
directions and on-shell momenta, the role of fundamental building blocks for
the recursively found expression for the helicity amplitudes. As an example,
we present a helicity amplitude with three gluons, one of them off-shell, and
a quark–anti-quark pair:

A
(
q−, g+

1 , g
−
2 , g

∗
3, q̄

+
)

=
[31]4〈3q〉3

[23][12]〈qq̄〉〈3|k/3 + p/2|1]〈3|p/1 + p/2|3]〈q|p/1 + p/2|3]

+
[3q̄]2〈2q〉3〈2|k/3 + p/q̄|3]

κ3〈12〉〈1q〉 (k/3 + p/q̄)
2
(
−〈2|k/3 + p/q̄|3]〈q|k/3|q̄]− [3q̄]〈2q〉 (k/3 + p/q̄)

2
)

+
[1q̄]3〈32〉4

κ∗3[qq̄]〈3|k/3 + p/2|1]〈2|k/3|q̄]〈3| (k/3 + p/2) k/3|2〉
. (6)

The number 3 in the spinor products refers to the direction p3 of the off-shell
gluon. If the amplitude is multiplied by |k3| =

√
|k2

3| and the limit k3 → p3
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is applied, then the first term in (6) vanishes, while the other two give

|k3|
κ3
A
(
q−, g+

1 , g
−
2 , g

+
3 , q̄

+
)

+
|k3|
κ∗3
A
(
q−, g+

1 , g
−
2 , g

−
3 , q̄

+
)
. (7)

So the amplitude with the off-shell gluon contains the amplitudes for both
helicities if the gluon were on-shell. This coherent sum eventually turns into
an incoherent sum of squared amplitudes via the remnant angular integral for
~kT 3. Due to the phase factors in front of the amplitudes in (7), interference
terms after squaring are eliminated by this angular integral.

3. AMP4HEF

Recently, the on-shell recursion for off-shell amplitudes has been applied
in a numerical program AMP4HEF to evaluate multi-gluon amplitudes [16].
It includes expressions obtained with the recursion for up to 5 gluons, and
numerical recursion for more gluons. Furthermore, it evaluates both ampli-
tudes and matrix elements, i.e. squared amplitudes summed over all colors
and helicities. This program has now been extended to include amplitudes
and matrix elements with one quark–anti-quark pair. More specifically, it
includes the following processes:

∅ → g g + 4g , ∅ → q̄ q + 3g ,

∅ → g∗ g + 4g , ∅ → q̄∗ q + 3g ,

∅ → g∗ g∗ + 4g , ∅ → q̄ q∗ + 3g ,

∅ → g∗ + q̄ q + 2g , (8)

plus those with fewer on-shell gluons. AMP4HEF can be obtained from:
http://bitbucket.org/hameren/amp4hef/downloads. It is written in For-
tran, but there is an interface for and an example of use in, C++ included.
Many object-oriented features of the Fortran 2003 standard are used, but
to the user only a few subroutines which take arrays of intrinsic types as
arguments are provided. To evaluate matrix elements, one only needs to:

use amp4hef

so one has access to

subroutine put_process( id ,Ntotal ,Noffshell ,process )
integer,intent(out) :: id
integer,intent(in ) :: Noffshell,Nonshell,process(*)

to set a process and obtain an integer identifier referring to that process,

subroutine put_momenta( id ,momenta ,directions )
integer ,intent(in) :: id
real(kind(1d0)),intent(in) :: momenta(0:3,*) ,directions(0:3,*)
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to set the values of the momenta ki and, for off-shell partons, the directions
pi, and

subroutine matrix_element( id ,ampSquared )
integer ,intent(in ) :: id
real(kind(1d0)),intent(out) :: ampSquared

to evaluate the matrix element summed over colors and helicities. A more
detailed description of the routines and their input/output is provided with
the program.

4. Conclusions

Factorization prescriptions relevant for scattering processes involving low
values of the fraction of the hadron momenta transfered to the partonic pro-
cess require matrix elements with off-shell initial-state partons. The pro-
gram AMP4HEF can evaluate such matrix elements, as well as individual
color-ordered amplitudes, numerically, for processes involving several exter-
nal partons.
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