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TOWARDS B(B̄ → Xsγ) FOR AN ARBITRARY
CHARM QUARK MASS∗
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Constraints on New Physics from the B̄ → Xsγ branching ratio are very
sensitive to uncertainties in the Standard Model prediction. However, some
of the dominant mc-dependent O(α2

s ) corrections are currently estimated
with the help of an interpolation in the charm quark mass mc, which causes
about ±3% uncertainty. They need to be calculated for the physical value
of mc. Here, we report on evaluation of all the necessary mc-dependent
ultraviolet counterterm contributions to the considered corrections.
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1. Introduction

The decay B̄ → Xsγ is a loop-generated flavour-changing neutral current
process. Some yet-undiscovered particles may appear in loop diagrams that
contribute to its amplitude. Comparing the current experimental average [2]
for its CP- and isospin-averaged branching ratio Bsγ = (3.43± 0.22)× 10−4

(for Eγ > E0 = 1.6 GeV) with theoretical predictions in the Standard Model
(SM) and beyond, one obtains bounds on masses and couplings of various
exotic particles. For instance, the recently updated 95% C.L. bound on
the charged Higgs boson mass in the Two-Higgs-Doublet Model II reads
MH± > 480 GeV [3].

Calculations of Bsγ are conveniently carried out in the framework of a
low-energy effective theory obtained after decoupling of the W -boson and
all the heavier particles. The weak interactions are described then by the
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operators Qi of either four-quark (i = 1, . . . , 6) or dipole type (i = 7, 8) —
see, e.g., Eqs. (1.5)–(1.6) of Ref. [4]. In a generic beyond-SM (BSM) model,
one finds [3, 4]

Bsγ × 104 = (3.36± 0.23)− 8.22 ∆C7 − 1.99 ∆C8 , (1)

where ∆C7,8 stand for the BSM contributions to the Wilson coefficients of
the dipole operators at the renormalization scale µ0 = 160 GeV. In the above
equation, only the linear terms in ∆C7,8 have been retained, and only C7,8

have been allowed to contain non-negligible BSM contributions.
The uncertainty in Eq. (1) is the SM one. It has been obtained by com-

bining in quadrature four types of uncertainties: non-perturbative (5%) [5],
parametric (2%), higher-order (O(α3

s )) perturbative (3%), and the one due
to mc-interpolation ambiguity in the perturbative O(α2

s ) corrections (3%).
At present, the SM prediction for Bsγ agrees within uncertainties with the

experimental average. However, more precise measurements are going to be
performed at the Belle II experiment that is scheduled to begin operation
in 2017. A more precise theoretical calculation is necessary to match the
expected experimental accuracy. The two main issues are re-considering the
estimates of non-perturbative effects, and eliminating the mc-interpolation
ambiguity in the perturbative O(α2

s ) corrections. A calculation [1, 6] that
contributes to removing the latter uncertainty is the topic of this report.

2. Interpolated parts of the O(α2
s ) corrections

Perturbative corrections to Bsγ are studied by considering the partonic
decay rate of the b quark into the photon and Xp

s = s, sg, sgg, sqq̄, . . .,

Γ (b→ Xp
s γ) ∼

8∑
i,j=1

Ci(µb)Cj(µb) G̃ij(E0, µb) , (2)

where Ci(µb) denote the Wilson coefficients at the renormalization scale
µb ∼ mb/2. The quantities G̃ij = G̃

(0)
ij + αs

4π G̃
(1)
ij +

(
αs
4π

)2
G̃

(2)
ij +O(α3

s ) describe
interferences of amplitudes generated by the operators Qi and Qj . The
dependence of the decay rate on mc starts to show up at O(αs) via matrix
elements of the current–current operators Q1 and Q2. At the Next-to-Next-
to-Leading Order (NNLO), the most important mc-dependent corrections
are G̃(2)

17 and G̃(2)
27 , which we shall commonly denote by G̃(2)

(1,2)7.

The part of G̃(2)
(1,2)7 that is proportional to the QCD β0-function has

been known for arbitrary mc since a long time [7, 8]. The same is true for
contributions from massive quark loops on the gluon lines [9]. However, the
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remaining part of G̃(2)
(1,2)7 is only known in two limiting cases: for mc = 0 [4]

and formc � mb/2 [10]. Its size at the physical value of z = m2
c/m

2
b is found

via an interpolation in z [4]. The interpolation generates an uncertainty that
is estimated at the ±3% level.

Evaluation of the missing corrections for an arbitrary value of z is un-
derway. Here, we shall report on a calculation of the ultraviolet counterterm
contributions to them. An extension of this work via inclusion of certain
BSM operators is in progress [11].

Using the Cutkosky rules, we express the considered contributions in
terms of two-scale (mb and mc) three-loop propagator integrals with unitar-
ity cuts. They are reducible to a limited set of Master Integrals (MIs) with
the help of standard integration-by-parts algorithms. The identified set of
MIs turns out to be closed under differentiation with respect to z, which
gives us a system of differential equations (DEs) for the MIs. This system
is numerically solved along an ellipse in the complex z-plane, starting from
initial conditions at large z. The initial conditions are found using asymp-
totic expansions, which effectively reduces our three-loop two-scale problem
to a two-loop single-scale one. In the latter case, the MIs become very sim-
ple. Apart from the numerical solution, we have also evaluated all the MIs
analytically as power-logarithmic expansions around z = 0, using a mixture
of the DE and Mellin–Barnes methods.

3. Counterterm contributions to G̃(2)
(1,2)7

Following Ref. [4], we consider G̃(2)
(1,2)7 with no cut on the photon energy

(E0 = 0), and with skipped contributions from charm–quark loops on the
gluon lines, together with the corresponding counterterms1. An explicit for-
mula for the renormalization of G̃(2)

27 in such a case can be found in Eq. (2.61)
of Ref. [6]. It generalizes Eq. (2.10) of Ref. [4] to arbitrary z 6= 0. Below, we
split all the z-dependent counterterms into parts originating from the two-
and three-particle cut diagrams, as indicated by the superscripts 2P and 3P,
respectively:

G̃
(1)bare
27 = G̃

(1)2P
27 + G̃

(1)3P
27 , G̃

(1)bare
7(12) = G̃

(1)2P
7(12) + G̃

(1)3P
7(12) ,

G̃
(1)m
27 = G̃

(1)m,2P
27 + G̃

(1)m,3P
27 . (3)

In the latter case, the superscript m denotes squaring one of the b-quark
propagators in the diagrams which account for renormalization of mb. The
quantity G̃(1)bare

7(12) originates from an interference of the photonic dipole op-
erator Q7 with the evanescent operator Q12. The latter operator vanishes in

1 The charm–quark loop contributions are already known from Ref. [9].
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four spacetime dimensions. All the z-dependent counterterms for Q1 are re-
lated to those in Eq. (3) by a colour factor of −1

6 , i.e., G̃
(1)bare
17 = −1

6G̃
(1)bare
27 ,

G̃
(1)bare
7(11) = −1

6G̃
(1)bare
7(12) , and G̃(1)m

17 = −1
6G̃

(1)m
27 .

Our results for all the quantities defined in Eq. (3) can be found in
Refs. [1, 6]. As an example, let us discuss here

G̃
(1)m,3P
27 = j0(z) + ε j1(z) +O

(
ε2
)

(4)

evaluated in D = 4 − 2ε dimensions. The functions j0(z) and j1(z) are
displayed in Fig. 1. They exhibit logarithmic divergences when z → 0. This
fact manifests itself as an extra 1/ε pole when the corresponding interference
term G̃

(1)m,3P
27 is calculated at z = 0 from the outset.

Fig. 1. The functions ji(z) defined in Eq. (4). See the text for interpretation of
these curves.

In both plots, our results obtained with the help of a numerical solution
to the DEs are shown by small (blue) dots. A bigger (red) dot indicates the
physical point used as a central value in the phenomenological analysis of
Refs. [3, 4], namely z ' 0.0567. The numerical solutions of the DEs were
obtained with an initial condition at z = 20 evaluated using our large-z
expansions. The curves describing these expansions for z > 20 are displayed
by the solid (blue) lines. The remaining solid (green) lines show either the
large-z expansions for 1

4 < z < 20, or the small-z expansions for 0 < z < 1
4 .

The physical cc̄ production threshold at z = 1
4 defines the convergence radii

of both expansions.
As far as the three-particle-cut contribution from the evanescent operator

is concerned, we have found G̃(1)3P
7(12) = −4ε(5 + ε)G̃

(1)3P
27 .

4. Outlook

A computation of the bare contributions to G̃(2)
(1,2)7 for arbitrary z is, in

principle, achievable using the same techniques as described in the previous



Towards B(B̄ → Xsγ) for an Arbitrary Charm Quark Mass 2115

sections. However, the enterprise is considerably more involved. In the two-
particle-cut case alone one encounters around 20000 scalar integrals, and
around 500 MIs. Many yet-unknown single-scale MIs are expected to show
up in the boundary conditions for the DEs. Given the complexity of the
project, it is hard to predict the time scale of the bare NNLO calculation.
However, one can realistically hope for its completion before Belle II starts
collecting data in 2017.

5. Conclusions

At present, the experimental determination of Bsγ agrees very well with
the SM prediction. A factor-of-two reduction of both the theoretical and
experimental uncertainties is feasible in the future. On the theory side, the
two main issues are re-considering estimates of the non-perturbative effects,
and eliminating the mc-interpolation in the perturbative NNLO contribu-
tions. Our current calculation has been a step towards a resolution of the
latter issue.

This work has been supported in part by the National Science Centre
(Poland) research project, Decision No. DEC-2014/13/B/ST2/03969, as well
as by the National Centre for Physics (Pakistan).
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