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Feynman integrals may be represented by the Mathematica packages
AMBRE and MB as multiple Mellin–Barnes integrals. With the Mathe-
matica package MBsums we transform these Mellin–Barnes integrals into
multiple sums.
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1. Introduction

In recent years, there was a remarkable progress in the development of
(semi-)automatized software for the numerical calculation of arbitrary, com-
plicated Feynman integrals. Basically, two approaches are advocated. One
relies on a sector decomposition. For an introduction given at this confer-
ence and for further references see [1]. We will report on the other approach,
based on Mellin–Barnes representations [2–12]. When [9] appeared in 2005,
several unsolved problems of different complexity existed. We mention non-
planar diagrams, the massive case, multi-loop tensor integrals, Minkowskian
kinematics. For all of the items, a progress is reported in [2], based on the
source-open software AMBRE/MB [8, 13, 14]. An alternative is the direct
analytical evaluation of MB-integrals. This is difficult. But in view of the re-
cent progress in algebraically summing up infinite sums by the Linz group’s
computer algebra algorithms for nested sums and products, one might hope

∗ Presented by J. Gluza at the XXXIX International Conference of Theoretical Physics
“Matter to the Deepest”, Ustroń, Poland, September 13–18, 2015.

(2117)



2118 M. Ochman, T. Riemann

to achieve a breakthrough [15]; certainly only if the result leads to appropri-
ate classes of functions. The idea is to apply the Linz group’s algorithms (as
well as those of others, e.g. [16]) to sums of residues after applying Cauchy’s
theorem [17]. A first attempt was reported in [18].

The automatized derivation of the multiple sums for a given MB-integral
is certainly the easier part of the task, but it is the first step. We report
here on a first version of the Mathematica program MBsums [19] for trans-
forming MB-representations for Feynman integrals into multiple sums. The
licence conditions of the source-open package are those formulated in the
CPC non-profit use licence agreement of the Computer Physics Communica-
tions Program Library [20]. The authors expect that the potential users read
and follow the licence agreement when using this code.

2. The Mathematica package MBsums

The package MBsums transforms Mellin–Barnes integrals into sums, by
closing the integration contours and calculating the integrals by the residue
theorem, i.e. by constructing sums over all residues inside the contours. The
current version of MBsums is 1.0. The package MBsums works with Wolfram
Mathematica 7.0 and later.

In order to obtain a sum from an MB-integral, the user should use the
MBIntToSum function of MBsums:

MBIntToSum[int,{},contours] (1)

or
MBIntToSum[int,kinematics,contours] , (2)

where int is the MB-integral in the form as it is denoted in the Mathematica
package MB [9]1:

int = MBInt[f,{{eps -> 0},{z1 -> c1, z2 -> c2, ... , zD -> cD}]
(3)

which corresponds to

int =
1

(2πi)d

i∞+c1∫
−i∞+c1

· · ·
i∞+cD∫
−i∞+cD

f

D∏
k=1

dzk . (4)

The integrand f can have the form

f =
∑
j

fj (5)

1 The package MBsums uses notations of the package MB, but can be run also inde-
pendently.
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and each fj is assumed to be of the form of

fj = ξj

∏
m Γ (N

(j,1)
m )

∏
m Ψ

(n)
(
N

(j,2)
m

)
∏

m Γ
(
N

(j,3)
m

) ∏
m

rN
(j,4)
m

m , (6)

where Ψ (0)(z) = d ln(Γ (z))/dz, Ψ (n>0)(z) = dnΨ (0)(z)/dzn, ri are free pa-
rameters (usually kinematic parameters) in int and ξj is a factor indepen-
dent of z-variables. The

N (j,k)
m =

∑
i

α
(j,k)
m,i zi + β(j,k)m + γ(j,k)m ε , (7)

where α(j,k)
m,i , β

(j,k)
m , γ(j,k)m are rational numbers and ε (eps) is an infinitesimal

dimensional shift, e.g. arising from d = 4 − 2ε. All the singularities of
the integrand of the MB-integral f are due (and only due) to Gamma and
PolyGamma functions.

The values of c1, c2, ... , cD are converted to rational numbers by
MBIntToSum before calculations.

Let us now focus on the case when the list kinematics is empty, i.e. we
will consider (2). The list contours has the form

contours = {z1 -> L/R, z2 -> L/R, ... , zD -> L/R} . (8)

The order of the z-variables defines the order of integrations chosen by the
user (from left to right). The L (R) means that the contour will be closed
to the left (right). The L/R choice made by the user can be changed if
kinematics is not empty and this will be covered later. The output of
MBIntToSum in (2) is of the form

{MBsum_1, MBsum_2, ... , MBsum_Q} , (9)

where

MBsum_i = MBsum[Sum_Coefficient_i,Conditions_i,List_i] (10)

represents a sum with summand Sum_Coefficient_i that has non-negative
indices given in the list List_i, and Conditions_i are conditions on those
indices. The complete answer is the sum of all MBsum_i in the list.

The list kinematics has the form

kinematics = {r_1 -> v_1, r_2 -> v_2, ... , r_K -> v_K} , (11)

where r_i are free parameters (usually kinematic parameters) in int and
v_i are values of r_i. If kinematics is not empty, then MBIntToSum will
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try to change the L/R choice made by the user in the list contours in order
to obtain sums that have good asymptotic behaviour at given values of r_i.
In any case the user is informed how the contour was closed. This will be
explained later in detail. The values of v_i are converted to rational num-
bers by MBIntToSum before calculations. The user can turn off all messages
printed by MBIntToSum by typing MBsumsInfo=False and turn them on by
typing MBsumsInfo=True.

In addition, we provide function DoAllMBSums[sums,nmax,kinematics]
that sums the sums in the form of (9). The nmax is the maximal value of
each index, the minimal value is given by conditions on indices. The list
kinematics is as above and may be empty. We used Wolfram Mathematica
function ParallelMap inside DoAllMBSums to sum individual sums in the list
sums in parallel.

3. Obtaining the sums

Let us now shortly explain how we obtain the sums. We point out the
most important ingredients in our algorithm. Let us focus on the case when
the list kinematics is empty, i.e. we will consider (2). The MB-integral is
in the form as it was denoted in (3). Let us now assume that the user has
chosen as first integration the z2->L. As a first step we form a list, which
we call NegArgsDoC, of arguments of the Gamma and PolyGamma functions
in the numerators that give residues for Re(z2) < c2 (see (3), the remaining
contours are seen as a straight lines). We call that list NegArgsDoC. Next,
we consider all possible cases: When all Gamma and PolyGamma functions that
have arguments in NegArgsDoC contribute to a residue at the same time,
and when only some subset of them contributes to a residue at the same time.
We consider all possible subsets of NegArgsDoC. Additionally, we have to
be careful when some Gamma functions in the denominator become singular
at some points. If we have terms like Gamma[2 z2], then the poles are at
z2 = −n/2 and we consider there 2 cases: n = 2n′ and n = 2n′ + 1, where
n and n′ are non-negative integers. Similarly, we proceed with arbitrary
M × z2 terms, where M is some integer value and, in general, with all n/M
terms which appear together with integration variable in the arguments of
the Gamma and PolyGamma functions. So we produce a list of cases{{

f
(1)
1 , c

(1)
1

}
,
{
f
(1)
2 , c

(1)
2

}
, ...,

{
f
(1)
K1
, c

(1)
K1

}}
, (12)

where f (1)i are expressions after taking residues of f and c(1)i are conditions
on the index that numerates terms (residues) in f

(1)
i . We obtain a list of

K1 elements after integrating over z2. Let us now assume that the user
has chosen as second integration variable z5->R. Then, we repeat the whole
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procedure on each f (1)i taking into account conditions c(1)i . Thus, we produce
analogous to (12) a list of cases{{

f
(2)
1 , c

(2)
1

}
,
{
f
(2)
2 , c

(2)
2

}
, ...,

{
f
(2)
K2
, c

(2)
K2

}}
. (13)

We repeat the whole procedure for each integration variable.

4. Contours and convergent sums

Let us now shortly explain how we obtain the sums if the list kinematics
is not empty. We follow the order of integration given in the list contours.
Our aim is to determine the L/R such that we obtain sums that have good
asymptotic behaviour at given values of r_i in the list kinematics. We do it
in the following way. At each integration step s, we analyse the expressions
f
(s)
i that are to be integrated over some zC . Each f = f

(s)
i we decompose as

f =
∑
j

gj (14)

and each g = gj is of the form of

g = ra11 r
a2
2 . . . raKK F , aj =

∑
i

aj,izi , (15)

where ri are the kinematic parameters in the list kinematics and F contains
the rest of g. If we integrate over zC , we consider

czC , c = r
a1,C
1 r

a2,C
2 . . . r

aK,C

K . (16)

The value of c is calculated. MBIntToSum prints the error message:

Found c = c (not a number): please complete kinematic’s list

for each gi in each f (s)i when c is symbolic (not a number) and at the end
MBIntToSum prints

Unable to find correct contour for zC

and returns {}. The user should complete the list kinematics.
For each gi in each f (s)i it is returned L if |c| > 1 or R if |c| < 1 indicating

how to close the contour or {} if |c| = 1.
If for each gi in each f (s)i it is returneded L (R) or {}, then the contour

for zC will be closed to left (right) if it is returned at least one L (R).
If for each gi in each f = f

(s)
i it is returned {}, then the choice of user

given in the list contours is taken.
If for some gi it is returned R and for some gj it is returned L, then

MBIntToSum prints the error message:
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Unable to find correct contour for zC

and returns {}. Otherwise, we compute the sums as described above. We
repeat the whole procedure for each integration variable. We stress that this
procedure as described above does not always give convergent sums.

There are MB-integrals for which no convergent sums can be found. One
such example is the following MB-integral:

B1 =
1

2πi

i∞∫
−i∞

dzΓ 2(1 + z)Γ 2(1− z) . (17)

Here we can apply the first Barnes lemma [3] and obtain B1 = 1/6, but the
reader can check that indeed the infinite series of residues diverge both for
Re z > 0 and Re z < 0.

Consider the following integral (see also [3]):

Bx =
1

2πi

i∞∫
−i∞

dzxzΓ 2(1 + z)Γ 2(1− z) , x > 0 ∧ x 6= 1 . (18)

Closing the contour to the right (Re z > 0) gives the following series

sR = −
∞∑
n=1

nxn(2 + n ln(x)) , (19)

convergent for 0 < x < 1, while closing the contour to the left (Re z < 0)
gives the following series

sL = −
∞∑
n=1

nx−n(2− n ln(x)) , (20)

convergent for x > 1. Both sL and sR give the same formula after summing
up, that is

sLR =
x(2− 2x+ (1 + x) ln(x))

(x− 1)3
, x > 0 ∧ x 6= 1 , (21)

so Bx = sLR and limx→1Bx = B1 .
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