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SIMPLIFYING SYSTEMS OF DIFFERENTIAL
EQUATIONS. THE CASE OF THE SUNRISE GRAPH∗
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Differential equations are one of the most powerful and promising tools
for evaluating multi-loop and multi-scale Feynman integrals. We report on
a new systematic method for simplifying systems of differential equations.
The method is based on the analysis of the integration by parts identities
in fixed integer numbers of dimensions. The case of the two-loop massive
sunrise is discussed in detail.

DOI:10.5506/APhysPolB.46.2125
PACS numbers: 11.10.–z, 11.15.Bt

1. Introduction and method

The recent discovery of a Higgs boson-like particle at the LHC [1, 2] has,
on the one hand, proved the internal consistency of the Standard Model,
while on the other, it has not provided any hints towards possible New
Physics phenomena. Precision calculations become therefore of crucial im-
portance in order to look for significant deviations between the theoretical
predictions and the experimental measurements at the LHC. Precision cal-
culations are based on perturbative expansion in dimensionally regularised
[3–5] Feynman integrals. The differential equation method [6, 7], based on
the integration by parts identities (IBPs) [8, 9], has proved to be one of
the most powerful tools for their analytic and numerical evaluation. The
by now standard way to calculate a given set of Feynman integrals is the
following. First of all, the IBPs can be used to relate integrals belonging
to the same Feynman graph, but with different powers of propagators and
scalar products. The IBPs form a large system of linear identities for the
integrals. The latter can be inverted allowing one to express most of the in-
tegrals in terms of a small subset of basic integrals, dubbed master integrals
(MIs). Building upon the Laporta algorithm [10], this reduction procedure
has been automatised in many public codes [11–14].
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The IBPs can be further used to prove that the MIs fulfil a system of
linear differential equations. If a given graph is reduced to N independent
MIs, then one can derive a system of N coupled differential equations for the
latter. With the increase in the number of loops and external legs, one is
usually left with larger and larger systems of coupled equations. It is well
known that an appropriate choice of basis of MIs can substantially simplify
the system of differential equations. In particular, since we are interested in
the MIs expanded as Laurent series in (d− 4), a clear simplification can be
achieved if a basis of MIs can be found, such that the system of differential
equations becomes triangular in the d→ 4 limit. Moreover, it is known that
thanks to the Tarasov–Lee shifting relations [15, 16], the physical relevant
case d→ 4 can be recovered from the Laurent expansion of the MIs in any
even number of dimensions, d→ 2n with n ∈ N.

We report here on a new, systematical method for achieving such a
simplification, focusing, in particular, on the case of the two-loop massive
sunrise graph. A detailed and more general discussion can be found in [17].
While the possibility of writing the IBPs is intrinsically based on the fact that
the MIs are evaluated for continuous values of the space-time dimensions d,
we will show that considering their d→ 2n limit can provide new identities
useful for decoupling the differential equations in this same limit. It can
be shown that these new identities are equivalent to the Schouten pseudo-
identities introduced in [18], in those cases where the latter can be derived.
The direct study of the IBPs as d → 2n is, nevertheless, simpler and more
general, since it can be applied, in principle, to any topology and in any
number of space-time dimensions, irrespective of the number of independent
momenta at disposal.

Let us consider again a graph reduced to N independent MIs Ii(d;x).
Upon fixing the number of space-time dimensions to an integer (for the phys-
ical interesting case, even) number, it can happen that the system of IBPs
degenerates, such that some of the MIs which used to be linearly independent
in d-dimensions, can instead become linearly dependent as d → 2n. This
degeneracy can be traced back in the d-dimensional IBPs to the existence
of relations of the form of

K(d;x) =
1

d− 2n
(b11(d;x)I1(d;x) + . . .+ b1N (d;x)IN (d;x)) , (1)

where K(d;x) is an integral of the graph under consideration, x is the set
of Mandelstam variables the integrals depend on, and bij(d;x) are rational
functions. As we will show in the next section, if M independent1 relations
of the form of (1) can be found, then they can be used to decouple M
differential equations from the system in the d→ 2n limit.

1 Here, independent has to be intended in the d → 2n limit.
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2. The case of the massive sunrise graph

Let us show how this works for the explicit case of two-loop massive
sunrise. The graph is defined as

I(d;n1, n2, n3, n4, n5) =

=

∫
DdkDdl

(k · p)n4(l · p)n5(
k2 −m2

1

)n1
(
l2 −m2

2

)n2
(
(k − l + p)2 −m2

3

)n3
. (2)

If all three masses have different values, a reduction through IBPs shows
that there are four independent MIs, which can be chosen to be

I1(d; s) = I(d; 1, 1, 1, 0, 0) , I2(d; s) = I(d; 2, 1, 1, 0, 0) ,

I3(d; s) = I(d; 1, 2, 1, 0, 0) , I4(d; s) = I(d; 1, 1, 2, 0, 0) . (3)

In [19], it was shown that these integrals fulfil a coupled system of 4 lin-
ear first-order differential equations in d dimensions. The system remains
coupled in the d → 2n limits, where n ∈ N. It was lately shown in [20],
using algebraic geometry methods (and as such a priori orthogonal to the
IBPs), that the scalar integral I1(d; s) satisfies a second-order Picard–Fuchs
differential equation in d = 2. In [18], we showed that the same result can be
obtained using the Schouten pseudo-identities. We will now discuss how this
can be seen simply by studying the IBPs in d = 2 space-time dimensions.

We generate the IBPs in d dimensions and, before solving them, we fix
d = 2. In this way, we find that two of the four MIs degenerate and become
linearly dependent from the other two. Neglecting the sub-topologies, we
find the following relations
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(4)
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As discussed, such relations come from the corresponding d-dimensional
IBPs with an overall factor 1/(d − 2). We refer to [17] for details. The
limiting value of the two relevant IBPs as d→ 2 generates Eqs. (4) and can
be used to decouple two of the four differential equations of the two-loop
massive sunrise graph by choosing as new basis of master integrals

J1(d; s) = I1(d; s) ,
J2(d; s) = I2(d; s) ,
J3(d; s) = −

(
2m2

1 −m2
2 −m2

3

)
I1(d; s) + 2m2

1
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1

)
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(
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(5)

It can be easily verified that the last two equations in (5) generate (4) if
we put J3 = J4 = 0 and invert them for I3 and I4. We refer to [17, 18]
for the details on the calculations. We want to stress here that with the
choice described above, the differential equations assume a block form in the
d → 2 limit, such that instead of having to solve a system of four coupled
differential equations, we are left with two coupled equations, plus two (in
principle straightforward) integrations by quadrature.

3. Conclusions

Differential equations are one of the most important tools for the cal-
culation of Feynman integrals. When considering complicated multi-loop
and/or multi-scale Feynman integrals, one is often left with a large number
of MIs and, consequently, a large number of coupled first-order differential
equations. Since we are usually interested in the coefficients of the MIs ex-
panded as Laurent series in (d− 4), we can try and simplify the system by
decoupling some of the equations in the d→ 4 limit. We discussed how this
simplification can be achieved studying the IBPs in the limit of even inte-
ger numbers of dimensions, as shown explicitly in the case of the two-loop
massive sunrise graph. A more complete discussion, with applications to a
larger number of examples, can be found in [17].
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