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In this paper, we discuss the solution for the sunrise integral around
two and four space-time dimensions in terms of a generalised elliptic version
of the multiple polylogarithms. In two space-time dimensions, we obtain
a sum of three elliptic dilogarithms. The arguments of the elliptic diloga-
rithms have a nice geometric interpretation. In four space-time dimensions,
the sunrise integral can be expressed with the ε0- and ε1-solution around
two dimensions, mass derivatives thereof and simpler terms.
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1. Introduction

The non-vacuum two-loop sunrise integral is the simplest integral in
quantum field theory which cannot be solved in terms of multiple polyloga-
rithms. Because of its fundamental character, the sunrise integral received
numerous attention in the past [1–16]. For the equal mass case, an analytic
result involving elliptic integrals and elliptic polylogarithms was provided in
[10, 16]. The results can be generalised to the arbitrary mass case [13–15],
which we will discuss in this paper.
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2. Differential equation for the sunrise integral

In D-dimensional Minkowski space, the two-loop sunrise integral reads
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with the three internal massesm1,m2,m3. In terms of Feynman parameters,
we obtain for the sunrise integral the expression
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with ν = ν1 + ν2 + ν3, the momentum squared t = p2, the differential
two-form ω = x1 dx2 ∧ dx3 − x2 dx1 ∧ dx3 + x3 dx1 ∧ dx2, the integration
region σ = {[x1 : x2 : x3] ∈ P2|xi ≥ 0, i = 1, 2, 3} and the Feynman graph
polynomials U and F
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We are interested in the Laurent expansions of S111(D, t) around two and
four space-time dimensions. These expansions start as
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In the following, we are mainly interested in determining S
(0)
111(2, t) and

S
(0)
111(4, t).
In D dimensions, the sunrise integral S111(D, t) satisfies an inhomoge-

neous fourth-order differential equation [15][
4∑
i=0

Pi
di

dti

]
S111(D, t) = µ2 [c12T12 + c13T13 + c23T23] , (4)

where the Pi’s and cij ’s are polynomials in D, t and the masses, and the
Tij ’s are products of simpler tadpole integrals. This differential equation
can then be expanded for example around D = 2− 2ε.
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3. The sunrise integral around two space-time dimensions

In two space-time dimensions, the fourth-order differential equation for
the sunrise integral from Eq. (4) can be simplified to a second-order dif-
ferential equation with a polynomial p(t) depending on t, the masses and
logarithms of the masses [11]

L
(0)
2 (2) S

(0)
111(2, t) = µ2p(t) . (5)

In D = 2, the integrand of Eq. (2) simplifies to 1
F . The equation F = 0,

together with the choice of an origin defines an elliptic curve. A convenient
choice for the origin is one of the intersection points of the algebraic variety
F = 0 and the integration region σ, where we have three different points
P1 = [1 : 0 : 0], P2 = [0 : 1 : 0] and P3 = [0 : 0 : 1]. Every chosen origin
Pi corresponds to a certain elliptic curve Ei with i = {1, 2, 3} which we can
transform into the Weierstrass normal form Êi.

In the next step, we compute the periods Ψ1, Ψ2 of the elliptic curve Êi
which leads to complete elliptic integrals of the first kind

Ψ1 =
4µ2√
D
K(k) , Ψ2 =

4µ2i√
D
K
(
k′
)
, (6)

where the (complementary) modulus k(′) depends on the roots ei of the
Weierstrass normal form, while the polynomial D depends on t and the
masses. The periods Ψ1, Ψ2 are the homogeneous solutions of the second-
order differential equation.

After changing the variable from t to the nome q = e2πiτ (cf. [16]) which
is the natural variable on an elliptic curve with the period ratio τ = Ψ2

Ψ1
,

we can write the special inhomogeneous solution in an overseeable form.
The aim is now to express this inhomogeneous solution in terms of the
homogeneous solutions and a new (elliptic) generalisation of the classical
polylogarithms. The two periods imply a lattice Λ which belongs to the
torus representation of the elliptic curve C/Λ to which we can transform by
the following elliptic integral

[x : y : 1]→ ẑ =
1
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. (7)

This function maps the image of the intersection point Pj ∈ Ek on the curve
Êk abbreviated by Qj,k onto the point

Qj,k → ẑi =
1

2

F (ui, k)

K(k)
(8)

with the incomplete elliptic integral of the first kind F (z, x).
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As the last step, we can compute the Jacobi uniformization C∗/q2Z of
the elliptic curve via the complex exponential ẑ → w = e2πiẑ mapping the
points ẑi to

ẑi → wi = exp

[
iπ
F (ui, k)

K(k)

]
. (9)

It turns out that with the following definition of elliptic polylogarithms
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(with cn = 1, sn = 1 for n even and cn = i and sn = −1 for n odd), the full
result for the sunrise integral S(0)

111(2, t) in two space-time dimensions with
arbitrary masses can be expressed as a sum of three elliptic dilogarithms

S
(0)
111(2, t) =

Ψ1(q)

π
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with the numbers wi as arguments [14].

4. The sunrise integral around four space-time dimensions

The sunrise integral around four space-time dimensions can be expressed
in the basis [9]{

µ2S111(D, t), µ
2 ∂

∂m2
i

S111(D, t) = −S1+δi,1 1+δi,2 1+δi,3(D, t)

}
(12)

with the help of Tarasov’s dimensional shift relations [17, 18]
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and R̃(0) is a remainder depending

on t and simpler mass terms. The ε1-solution S(1)
111(2, t) involves apart from

the functions of Eq. (10), one new function En1,n2;m1,m2;2o(x1, x2; y1, y2; q)
defined in [15]. This function can be viewed as a generalisation of multiple
polylogarithms of depth greater than one. If we define the weight of En;m by
w = n+m and the weight of En1,n2;m1,m2;2o by w = n1+n2+m1+m2+2o, it
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is worth noting that the O(ε1)-part is not of uniform weight. The O(ε1)-part
of the sunrise integral around two space-time dimensions contains terms of
weight three and four.

To understand this issue, one can consider the simpler equal mass case for
S
(1)
111(2, t) where one is concerned with an inhomogeneous second-order differ-

ential equation for S(1)
111(2, t). With a suitable ansatz for S(1)

111(2, t) involving a
part proportional to S(0)

111(2, t) and a remainder, one obtains a much simpler
differential equation. Both parts of the ansatz contain log(−q)-terms, which
cancel out in the end, but as a remainder from integrating the log(−q)-term
from the second part when solving the differential equation, we obtain the
weight four terms.
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