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In this paper, the publicly available program SecDec is briefly described.
Its main virtues and new features are summarized, including suggestions
for an optimal usage of the program.
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1. Introduction

In light of the increasing precision achieved by the experiments at the
Large Hadron Collider, the uncertainties on theoretical predictions need to
decrease at equal speed. Background processes need to be understood at
the same level of accuracy as the predictions of signals, so that the Stan-
dard Model can be confirmed or deviations from it be discovered. This
requires the computation of higher orders in perturbation theory. For a
considerable number of processes, predictions at NNLO would be desir-
able for the LHC Run 2 and beyond. These involve the computation of
complicated, often massive, two-loop diagrams. In particular, multi-loop
multi-scale integrals are highly challenging for currently available analytical
techniques. However, they are more easily accessible with numerical evalu-
ation approaches. One public program to evaluate such diagrams is SecDec
[1–4], which relies on the method of sector decomposition [5–7] to factor-
ize UV and IR singularities. Using subtraction terms, the singularities can
be extracted and their coefficients integrated numerically. SecDec is avail-
able from http://secdec.hepforge.org/. Other public implementations
are the programs sector_decomposition [8, 9] and Fiesta [10–12].
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2. Applicability of the program SecDec

The program SecDec is designed for multifold applications. Many recent
improvements were implemented for Feynman multi-loop integrals. None-
theless, more general parametric integrals and integrals which deviate from
the standard form of Feynman integrals can be computed as well.

A scalar Feynman integral G in D dimensions at L loops with N prop-
agators, where the propagators can have arbitrary, not necessarily integer
powers νj , has the following representation in the momentum space:

G =
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= q2j −m2

j + iδ , (2)

where the qj are linear combinations of external momenta pi and loop mo-
menta kl. Multi-loop Feynman integrals with scalar, rank R or inverse
propagator numerators can be handled by SecDec within the loop setup.
Prefactors dependent on the dimensional regulator ε are allowed, any scale
dependence must be explicitly given by the user. Internally, the user in-
put of the aforementioned loop integral specifications is transformed into a
representation in terms of Feynman parameters. After the loop momentum
integration, the general expression for a scalar Feynman integral reads
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(3)
with Nν =

∑N
j=1 νj , see e.g. Ref. [13] for the definition of general Feynman

loop integrals of rank R. The graph polynomials U and F in Eq. (3) contain
the sub-UV and IR divergences of an integral, respectively. The polynomials
can be constructed from topological cuts by SecDec or from the explicit
specification of propagators in momentum space in the math.m input file.

When numerical checks at intermediate stages of an analytical (multi-)
loop calculation are of interest, or when the integral at hand is simply too
complicated for a direct numerical evaluation, an analytical preparation can
be beneficial. Then, the integral is no longer of the form of Eq. (3). Such
integrals, as long as they match the following structure,

Guser=P (ε)

1∫
0

N∏
j=1

dxj x
aj(ε)
j N (~x, sij , ε)UexpoU(ε)(~x, sij)FexpoF(ε)(~x, sij)

(4)
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can be handled within the userdefined setup of SecDec. In Eq. (4), the
function N may contain products of polynomials with either a direct or
exponential dependence on ε. The functions U and F may have negative
exponents, and powers aj < 0 are allowed. The function F is chosen as
reference for the analytical continuation of the integrand to the physical
region. For further details, the reader is referred to Refs. [2, 3, 14].

More general parametric functions are handled in the general setup of
SecDec. Examples are phase space integrals, where IR divergences are reg-
ulated dimensionally, or hypergeometric functions. This setup allows for
an arbitrary number of products in the integrand, where each of them can
have a negative exponent. While the poles of the integrand are factorized
using sector decomposition, it is sometimes of interest to include additional
ε-dependent functions, which may depend on the integration parameters but
do not contain any non-factorized poles. These functions can be masked in
so-called “dummy functions”. The latter feature is implemented in version 3
of the program.

3. Brief summary of the operational sequence

The program SecDec processes the user input further by factorizing the
poles of the integrand using either one of the two heuristic [7, 13] iterated
sector decomposition strategies or one of the two deterministic [4, 15] ones.
The user can choose among the four, see Ref. [4] for details. While the
heuristic algorithms used to lead to more compact expressions to be inte-
grated numerically, they are not guaranteed to terminate. The other two
algorithms are based on the algebraic geometry and cannot lead to an infi-
nite recursion by construction. While the original strategy by Kaneko and
Ueda [15, 16] generated the lowest number of sectors compared to the other
available strategies [5, 17–19], its resulting functions turned out to converge
slower than the ones resulting from the simplest heuristic strategy. By con-
trast, our new composed strategy G2 [4] outperforms all others in terms of
the number of sectors created during the decomposition, see [4], and in terms
of convergence during numerical integration.

After the factorization of poles, an analytical continuation of the inte-
grand into the complex plane is performed if applicable, see Ref. [2] for
details. The last algebraic step is the subtraction of the poles and expansion
in ε, such that the coefficients of a Laurent series in ε are obtained in the
form of parametric functions. Up to this point, kinematic invariants are left
symbolic. Explicit values are only inserted at the numerical stage. This has
the advantage that looping over ranges of kinematic points is facilitated as
only the numerical integration step has to be performed repeatedly. On the
other hand, sometimes only one or two kinematic points of highly compli-
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cated integrals are of interest for numerical checks. In this case, including
values for the kinematic invariants from the start simplifies the functions
which need to be integrated numerically at the end. Explicit numerical val-
ues can be specified in addition to the definition of the scalar products of
the external momenta in ScalarProductRules in the math.m input file, e.g.
ScalarProductRules={. . . , s->5.1}.

4. New features at one glance

The following list features improvements made to SecDec with the up-
grade to version 3:

— Two additional deterministic sector decomposition algorithms based
on computational geometry are implemented.

— Numerators can be given in terms of inverse propagators.

— Loop integrals with linear propagators can be handled.

— Additional ε-dependent symbolic functions can be included in para-
metric integrals.

— The restructured user input helps in building interfaces to reduction
programs [20–23] or Loopedia [24].

— The two numerical integrators CQuad [25] and NIntegrate [26] are in-
cluded in addition to the implementation of the updated version of
Cuba [27–29]. CQuad is the fastest adaptive one-dimensional param-
eter integrator on the market and is chosen automatically by SecDec
when it can be used.

— The usage of batch systems is facilitated and scans over parameter
ranges are accelerated.

5. Summary

These proceedings highlight the applicability of the publicly available
program SecDec. The operational sequence of the latter and its new features
are summarized and suggestions for an optimal usage of the program are
given.

The author would like to thank Gudrun Heinrich, Stephen Jones,
Matthias Kerner, Johannes Schlenk and Tom Zirke for the fruitful collab-
oration, and the organizers of the “Matter to the Deepest 2015” for their
excellent work in setting up an interesting conference. This work is sup-
ported by the ERC Advanced Grant MC@NNLO (340983).
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