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The Matrix Element Method (MEM) has proven beneficial to make
maximal use of the information available in experimental data. However,
so far it has mostly been used in Born approximation only. In this paper,
we discuss an extension to NLO accuracy. As a prerequisite, we present an
efficient method to calculate event weights for jet events at NLO accuracy.
As illustration and proof of the concept, we apply the method to the ex-
traction of the top-quark mass in e+e− annihilation. We observe significant
differences when moving from LO to NLO which may be relevant for the
interpretation of top-quark mass measurements at hadron colliders relying
on the MEM.
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1. Jet event weight

In experiments, jets are obtained from hadronic momenta which are re-
constructed from tracks and energy depositions in the detectors. In the-
ory, those jets are modeled by clustering the partonic final states one usu-
ally ends up with in calculations: p1, . . . , pN → J1, . . . , Jn. In what fol-
lows, we will refer to all observed (jet-)momenta J1, . . . , Jn from a collision
PA + PB → J1, . . . , Jn + X as ‘jet event’. A weight for this event can be
defined by interpreting the differential cross section as a probability den-
sity to measure a specific event: ρ = dσAB→n

dJ1...dJn
. With a differential jet cross

section, one can calculate more inclusive observables, generate unweighted
events according to ρ or use it in likelihood analysis methods like the Matrix
Element Method.
∗ Presented by T. Martini at the XXXIX International Conference of Theoretical
Physics “Matter to the Deepest”, Ustroń, Poland, September 13–18, 2015.

(2143)



2144 T. Martini, P. Uwer

2. Matrix Element Method

2.1. Leading order

The MEM [1] can be used to extract model parameters Ω from data by
maximizing a likelihood (e.g. for a given set of jet events ~xi = (J1, ..., Jn)i)

LBorn(Ω) =
∏
i

1

σB(Ω)

∫
d~y
dσB(Ω)

d~y
W (~xi, ~y )︸ ︷︷ ︸

here: =δ(~x−~y )

=
∏
i

1

σB(Ω)

dσB(Ω)

d~xi

which is proportional to the differential cross section. Maximizing with re-
spect to Ω yields an estimator for Ω̂: LBorn(Ω̂) = supΩ LBorn(Ω). Since
all information in the event is used in the matrix element, this method is
believed to provide the most efficient estimator. Pioneered at the Tevatron
(e.g. [2, 3]), the MEM is widely used today (e.g. [4, 5]). Automation of the
MEM has been studied in [6]. However, one caveat of the above formulation
is its limitation to LO accuracy. A first attempt towards NLO has been made
in [7] studying the effect of QCD radiation. In [8], the hard matrix element
and a parton shower is used to discriminate signal versus background. An
NLO extension for events with uncolored final states has already been pre-
sented in [9]. The hadronic production of jets is investigated in [10]. NLO
and LO jets are mapped by means of a boost along the beam axis to balance
the transverse momentum.

2.2. Next-to-leading order likelihood for jet events

When writing an ansatz for the likelihood at NLO (for a given set of
events with n jets) as a sum of the Born and virtual (B+V) part and the
real (R) part (with unresolved additional radiation)

LNLO(Ω) =
∏
i

1

σNLO
n-jet (Ω)

(
dσB+V

n→n-jet(Ω)

dJ1 . . . dJn
+
dσR

n+1→n-jet(Ω)

dJ1 . . . dJn

)∣∣∣∣∣
event i

,

one faces three problems:

1. Since both contributions are separately infrared (IR) divergent, a point-
wise cancellation within phase space must be ensured. So both contri-
butions have to be evaluated for the same jet momenta.

2. In the real contribution, n + 1 partons are clustered to n jets: Ji =

J̃i(p1, . . . , pn+1). This introduces δ-functions δ(Ji − J̃i(p1, . . . , pn+1))
in the phase space integration which render any numerical integra-
tion useless. If the real phase space factorizes in terms of an n-jet
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phase space and the unresolved configurations: dRn+1(p1, ..., pn+1) =

dRn(J̃1, ..., J̃n)dRunres(Φ), these δ-functions will be fulfilled by con-
struction: dRn+1(p1, ..., pn+1)δ(J̃i − Ji) = dRunres(Φ)|

J̃i=Ji
. This fac-

torization serves as an inversion of the jet algorithm since dRunres(Φ)
generates only partonic configurations that result in the given jet event.

3. In the Born and virtual contribution, n partons form n jets: Ji = pi.
To evaluate the Born and virtual matrix elements for the jet momenta
(Ji = J̃i), the clustered jets have to be on-shell: J̃2

i = m2
i and respect

momentum conservation: J̃1 + . . .+ J̃n = p1 + . . .+ pn+1 at the same
time. This is not possible with 2→ 1 clustering prescriptions.

Employing instead 3 → 2 clustering prescriptions (inspired by the Catani–
Seymour dipole subtraction method [11, 12]) allows to meet these require-
ments enabling the cancellation of the IR divergences and factorization of
the real phase space. Using this modified jet algorithm allows to define an
event weight (differential jet cross section) at NLO accuracy

dσNLO
n-jet (Ω)

dJ1 . . . dJn
=
dσB+V(Ω)

dJ1 . . . dJn
+

∫
dRunres(Φ)

dσR(Ω)

dp1 . . . dpn+1
.

The mutual cancellation of the IR divergences has to be carried out by a
suitable subtraction method (e.g. phase space slicing [13]).

3. Validation and application

To validate our approach, we reproduce jet distributions calculated with
an conventional parton level Monte Carlo generator (MC) using the 3 → 2
jet algorithm. Two sample processes which cover all essential aspects are
studied: Drell–Yan pp → e+e− (initial state radiation) and top-quark pair
production at a lepton collider e+e− → tt̄ (final state radiation with massive
particles). For calculational details, see [13, 14]. We veto on additional jet
emission since we are only interested in the case when there is a recombina-
tion in the real contribution.

3.1. Phase space generation

As an example Fig. 1 shows the invariant mass distribution of the lepton
pair from Drell–Yan obtained with the parton level MC (solid/blue) and
the factorized jet phase space as outlined above (dashed/red). The lower
part of the plot shows the difference in terms of the statistical error. We
find perfect agreement between the two distributions. Comparisons of other
observables, also for top-quark pair production, yield similar conclusions and
are presented in [15].
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Fig. 1. Validation of the phase space generation (Drell–Yan).

3.2. Generation of unweighted events

With the jet event weight at NLO, we can generate unweighted jet events
at NLO using a simple acceptance/rejection algorithm. As an example,
Fig. 2 shows histogrammed cos θt of these events (dashed/red). Again, we
find perfect agreement when comparing with the distribution obtained from
the conventional parton level MC (solid/blue). Comparisons of the other
observables yield similar conclusions (see [15]).
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Fig. 2. Validation of the generation of unweighted NLO top-quark pair events.
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3.3. Matrix Element Method at next-to-leading order accuracy

Treating the sample of unweighted jet events which were generated with
an input value of the top-quark mass mtrue

t = 174 GeV as a toy experiment,
where jet angles ~xi = (cos θt, φt, cos θt̄, φt̄)i were measured, we can apply the
MEM at NLO to the sample of NLO tt̄ events

LNLO(mt) =
N∏
i

LNLO(~xi|mt)=

(
βt

32π2σNLO
tt̄

(mt)

)N N∏
i

dσNLO
tt̄ (mt)

dJt dJt̄

∣∣∣∣
event i

.

Figure 3 shows the negative logarithm of the likelihood (‘Log-Likelihood’)
as a function of mt at Born (solid/blue) and NLO (dashed/red) accuracy.
The estimator m̂t ± ∆m̂t is extracted by a fit (dotted lines). Extracting
m̂NLO
t from the NLO events with the NLO likelihood perfectly reproduces

mtrue
t , while the extraction with the Born likelihood yields a value for m̂Born

t

which differs from mtrue
t by 4 GeV. It is no surprise that using the wrong

likelihood might result in a biased estimator. However, the size of the effect
is remarkable, considering that NLO corrections to distributions for this
process only amount to a few percent. Finally, it should be noted that the
renormalization scheme is well-defined in the MEM at NLO, allowing a less
ambiguous interpretation of the extracted parameters. For more details on
MEM at NLO, we refer the reader to [15].
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Fig. 3. NLO and Born Log-Likelihood as a function of mt.
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