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In the composite models with colored substructure of the fermions, the
color singlet leptons are accompanied by a composite color octet partners,
which are known as leptogluons. We consider the effect of leptogluons in the
dilepton production at the LHC and show that in the reachable parameter
range this effect is typically dominated by t-channel leptogluon exchange
(indirect channel). We show that this channel alone can give a sizable
contribution to the dimuon production at the LHC for TeV scale values of
the invariant mass of µ+µ− pairs.
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1. Introduction

For about a century, the particle physics has investigated matter at dis-
tances from about 10−10 m (size of the atom) to about 10−15 m (nucleons
substructure), so it is five orders of magnitude progress in exploring the
micro-world. A big question is what can happen next? Are presently known
elementary particles complex at smaller distances? There are many interest-
ing theories which explore physics at these tiny distances below 10−15 m, let
us mention only theories of extra dimensions or string theories. Yet another
type of models constitute the so-called composite models [1–8].

Early models, which introduced a substructure of the Standard Model
(SM) leptons, were discussed in Refs. [4–8]. Leptons with colored subcom-
ponents are automatically accompanied by color octet composites `8 having
the same lepton numbers, which are called leptogluons. They can be probed
at the high-energy collider experiments [9–11], in particular, at the LHC
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frontier [12–14]. Collider effects of the leptogluons are of exceptional inter-
est since they are dominated by the tree level processes, while the related
contact interactions and contributions to the lepton magnetic moments have
one- and two-loop suppression, respectively.

The strongest mass bound for the charged leptogluons is m8 > 1.2–
1.3 TeV [14]. However, for the choice of parameters in Ref. [14], the t-channel
production of leptogluons is suppressed with respect to their pair production.
In this work, we show that for the compositeness scale Λ, which is close to
the allowed values of m8, the t-channel exchange of leptogluons dominates
over their pair production at 8 TeV LHC, and this channel alone can give a
sizable contribution to the production of dileptons with the invariant mass
m(`+`−) = O(1) TeV. (Here and below, m8 denotes the relevant `±8 mass.)

2. Indirect and pair production of leptogluons at the LHC

The effective interaction of `8 with leptons and gluons can be written
as1 [15]

L =
gs

2Λ
`A8 σ

µνGAµν(a`LPL + a`RPR)`+ H.c. , (1)

where gs is the strong coupling constant, GAµν is the gluon field strength,
PL(R) is the left (right) projector, ` = e, µ, τ , σµν = i

2 [γµ, γν ], and for the
new couplings, we take: a`L = 1 and a`R = 0 [14]. The width of the
dominant decay of `8 can be written as Γ`8→g` = αsm

3
8/(4Λ

2).
The leading Feynman diagrams on the parton level for indirect production

(IP) and pair production (PP)2 of `8 in p–p collisions are shown in Figs. 1
and 2, respectively, and the total cross sections are (see Appendix A)

σ̂gg→`+`− =
π

12
α2

s ξ
4m2

8 F (r) , (2)

σ̂qq̄→`+8 `
−
8

=
16π

9

α2
s

m2
8

r(1 + 2r)β , (3)

σ̂gg→`+8 `
−
8

=
π

12

α2
s

m2
8

[
F1(r) + ξ4m4

8 F2(r) + ξ2m2
8 F12(r)

]
, (4)

where we have neglected terms of the order of O(Γ/m8) with contributions
below 1%, ξ = a`L/Λ, r = m2

8/ŝ and β =
√

1− 4r. Other functions are

1 Notice that the effective compositeness scale for contact (4-fermion) interactions may
exceed the scale Λ in Eq. (1) due to the loop factor, which was mentioned above.
Notice that factor 1/2 in Eq. (1) leads to the Feynman rule without factor 2.

2 Directly produced `±8 undergo `±8 → `±g decays with close to 100% branching ratios.
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Fig. 1. Leading Feynman diagrams for gg → `+`− via t-channel exchange of `±8 .g g ! l8 l8
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Fig. 2. Leading Feynman diagrams for the processes gg → `+8 `
−
8 and qq̄ → `+8 `

−
8 .

defined as

F (r) =
1− 6 r − 24 r2

2 r
+ 3 r(3 + 4r) ln

(
1 + r

r

)
, (5)

F1(r) = −18 r(4 + 17 r)β + 54 r(1 + 4 r − 4 r2) ln

(
1 + β

1− β

)
, (6)

F2(r) =
4 (1− 4 r)

r

[
(1 + 6 r)β + 6 r2 ln

(
1− 2 r + β

1− 2 r − β

)]
, (7)

F12(r) = −3 (2 + r)(1 + 6 r)β

+
18 r(1 + r)

1− r

[
ln

(
1 + β

1− β

)
+ r2 ln

(
1− 2 r + β

1− 2 r − β

)]
. (8)

The total cross section for pp→ abX → cdX can be calculated as

σpp→cdX =

1∫
y0

dy

y

1∫
y

dx

x
pa
(
x, µ2

F

)
pb

(y
x
, µ2

F

)
σ̂ab→cd(ys) , (9)

where y0 = µ2
cd/s (µcd is the minimal invariant mass of cd),

√
s is the

total energy of the proton–proton collisions, µF is the factorization scale,
pa(x,Q

2) = x pdfa(x,Q) is the parton a distribution in proton for the mo-
mentum transfer Q, and X represents the two jets close to the beam axis.

We have performed numerical calculations in MadGraph5 [22], using
FeynRules [23, 24] to generate UFO-format [25] model files. Figure 3 shows
cross sections for IP and PP3 of leptogluons at the LHC. In particular, IP of
`8 dominates at 8 TeV LHC for m8 > 1.2 TeV (current bound) and Λ ∼ m8.

3 The dependence of PP of `8 on Λ is due to the 4th and 5th diagrams in Fig. 2.
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For m8 ≈ 1 TeV, the cross sections increase by factor of O(10) with the
energy increase up to 14 TeV. For m8 ≈ 2 TeV, the PP (IP) cross section
increases by factor of about 300 (∼ 30) with the same energy increase.

Fig. 3. Total cross sections for various processes that involve leptogluons versus
the leptogluon mass m8 for

√
s = 8 TeV (left) and 14 TeV (right). Solid (dot-

dashed) and long-dashed (short-dashed) lines represent pp `8−→ `+`− and pp→ `+8 `
−
8

processes for the compositeness scale Λ = m8 (Λ = 5 TeV), respectively.

Figure 4 (left) shows the simulated dimuon invariant mass spectra at the
LHC with

√
s = 8 TeV and 20.6 fb−1 of the integrated luminosity, where

light, dark and white histograms represent Drell–Yan production (dominant
SM background: Z/γ∗), the effect of muonic leptogluons µ±8 with m8 =
Λ = 1.5 TeV and their combination, respectively. The difference between
the number of events in the CMS data [26] and the number of simulated
events normalized to the number of simulated events in various ranges of the
invariant mass m(µ+µ−) is shown in Fig. 4 (right). The solid line represents
the SM background. The dashed line corresponds to the combination of
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Fig. 4. Left: Simulated µ+µ− invariant mass spectra. Right: Normalized differ-
ence between the number of the CMS data and simulated dimuon events in the
given m(µ+µ−) ranges for

√
s = 8 TeV and with 20.6 fb−1. Solid (dashed) line is

connected with the SM background (the SM background plus the signal of µ±
8 ).
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the SM background and the effect of IP of µ±8 with the mass m8 = 2 TeV
and coupling-to-scale ratio ξ = (2.4 TeV)−1, which minimizes the likelihood
function: χ2

min = 2.07. Figure 4 shows that IP of µ8 decreases the dimuon
signal for large m(µ+µ−).

To conclude, the present analysis shows a possibility of sizable effects of
leptogluons in dilepton production at the LHC for large invariant masses.

We would like to thank Janusz Gluza and Henryk Czyż for collaborative
work. This work was supported in part by the Polish National Science
Centre, grant number DEC-2012/07/B/ST2/03867.

Appendix A

Indirect production of `±8
Analytical results were derived with the help of FeynArts [16] and Form-

Calc [17]. Differential cross section for IP of leptogluons can be written as

dσ̂gg→`+`−

dt̂
=

1

16πŝ2

1

256
dR g

4
s ξ

4
∑

(M11 +M22) , (A.1)

where the two summands (one of them is missing in Ref. [18]) correspond to
the two diagrams in Fig. 1, dR = 8 is the dimension of octet representation of
SU(3), factor 1/256 = 1/(22 82) comes from the averaging over polarizations
and colors of gluons, and normalized squared matrix elements are

∑
M11 = −

4 t̂ 3
(
ŝ+ t̂

)(
t̂−m2

8

)2 ,
∑
M22 = −

4 t̂
(
ŝ+ t̂

)3(
û−m2

8

)2 , (A.2)

where ŝ = (k1 + k2)2, t̂ = (q1− k1)2 and û = (q2− k1)2 are the Mandelstam
variables, and

∑
denotes the summation over initial and final spin states.

Equation (2) can be derived using the formula

σ̂gg→`+`− =

0∫
−ŝ

dt̂
dσ̂gg→`+`−

dt̂
. (A.3)
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`+8 `
−
8 pair production

Following the method of Refs. [19–21] for gg → `+8 `
−
8 , we have

dσ̂gg→`+8 `
−
8

dt̂
=
πα2

s

16ŝ2

[
K1(R)

∑
(Mss +Mst +Msu)

+K2(R)
∑

(Mtt +Muu) +K3(R)
∑
Mtu

+ξ4K4(R)
∑(

M``
tt +M``

uu

)
+ ξ2K5(R)

∑(
M`

st +M`
su

)
+ ξ2K6(R)

∑
M`

tu

]
, (A.4)

where the terms with M`
tt and M`

uu are absent due to zero color factors,
and the normalized squared matrix elements are given as follows∑
Mss =

(
t̂−m2

) (
û−m2

)
ŝ2

, (A.5)∑
Mst =

(
t̂−m2

) (
û−m2

)
+m2

(
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)
2ŝ
(
t̂−m2
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∑
Msu

(
t̂↔ û

)
, (A.6)
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(
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)
2
(
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Muu

(
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)
, (A.7)
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uu

(
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)
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su

(
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)
, (A.10)

∑
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[
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) (
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)
8
(
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)
û

+ m2 t̂û− 4û2 + 2m2
(
3t̂+ 7û

)
− 17m4

8
(
t̂−m2

)
û

]
+
[
t̂↔ û

]
, (A.11)

where m ≡ m8, and the nonvanishing color factors can be written as

K1(R) = dRCACF = 72 , K2(R) = dRC
2
F = 72 , (A.12)

K3(R) = dRCF[CA − 2CF] = −72 , (A.13)
K4(R) = 64 , K5(R) = −K6(R) = 24 , (A.14)
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where CA and CF are the Casimir invariants. In our case of SU(3) octets,
we have dR = 8 and CA = CF = 3. Equation (4) can be derived using the
formula

σ̂gg→`+8 `
−
8

=

m2− ŝ
2

(1−β)∫
m2− ŝ

2
(1+β)

dt̂
dσ̂gg→`+8 `

−
8

dt̂
. (A.15)

The terms that include ξ in Eq. (A.4) are new analytical results related to
the 4th and 5th diagrams in Fig. 2 and their interference with other diagrams.

The differential cross section for qq̄ → `+8 `
−
8 is given in Ref. [12]. How-

ever, there is a misprint in Ref. [12] concerning the interference terms in
Eq. (A.6).
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