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We study a model of vector dark matter with the complex scalar Higgs
portal. Renormalisation group equations at the 2-loop level are used to
analyse perturbativity and stability of the vacuum. We impose experi-
mental and theoretical constraints on the model, and find regions in the
parameter space consistent with the dark matter relic abundance inferred
from the Planck data and bounds on DM-nucleon scattering cross section
from XENON and LUX experiments.
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1. Introduction

The Standard Model of particle physics (SM) is an extremely success-
ful theory, which describes the properties of all known elementary particles,
notably also the characteristics of the Higgs boson. Nevertheless, the cos-
mology requires also the existence of the dark matter (DM), which cannot be
built out of the fields included in the SM. This fact is the major motivation
to explore SM extensions.

In this paper, we study a model of a Higgs portal with a complex scalar
field responsible for the mass generation of an Abelian vector dark matter.
We check, if it can explain the value of the DM relic abundance obtained
from the measurements of the Planck satellite and fulfill constraints coming
from colliders and DM direct detection experiments.

We also consider the issue of the vacuum stability and discuss whether
the metastability of the scalar potential, which is a feature of the SM [1],
can be avoided in the extended framework. In particular, we present the
modifications to the stability of the potential due to the existence of the
vector dark matter.
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2. Description of the model and theoretical constraints

The model of vector dark matter (VDM) is an extension of the SM with a
complex scalar field S that is charged under an extra U(1)X gauge factor and
has nonzero vacuum expectation value (VEV) [2]. Consequently, an extra
massive gauge boson appears in the theory, which can be a DM candidate,
provided it is stable. This can be ensured by imposing Z2 symmetry on the
U(1)X boson Aµ with the following transformation rules:

AµX → −A
µ
X , S → S∗ ,

where S = φeiσ , so φ→ φ , σ → −σ . (1)

As a result, the kinetic mixing of U(1)X and the SM hypercharge U(1)Y is
forbidden, whereas the U(1)Y and SU(2)L gauge bosons mix as in the SM.
The masses of vectors are given by:

MW = gv/2 , MZ =
√
g2 + g′2v/2 and MZ′ = gxvx , (2)

where v and vx are VEVs of H and S respectively, and gx is the U(1)X gauge
coupling. The scalar potential in this model can be written as

V = −µ2H |H|2 + λH |H|4 − µ2S |S|2 + λS |S|4 + κ|S|2|H|2 . (3)

It has three positivity conditions which are imposed in further discussions:

λH > 0 , λS > 0 , κ > −2
√
λHλS . (4)

The mass squared matrixM2 for the fluctuations (φH , φS) of the scalar
fields around VEVs can be diagonalized via rotation by a mixing angle α

M2 =

(
2λHv

2 κvvx
κvvx 2λSv

2
x

)
,

(
h1
h2

)
=

(
cosα − sinα
sinα cosα

)(
φH
φS

)
. (5)

We chose the convention in which h1 is the observed Higgs particle.
The potential has 5 parameters, but using the constraints Mh1 = 125.7 GeV
and v = 246.22 GeV, we can eliminate two of them and, including gx, use
four independent parameters (λH , λS , κ, gx) to describe the model.

3. Stability of the vacuum

In order to check the stability and perturbativity conditions, we adopted
the renormalisation group equations (RGE). There is a large quantitative
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difference in the running of parameters between 1- and 2-loop levels. There-
fore, we chose more accurate 2-loop approximation. It was obtained with
the help of the SARAH software [3] and cross-checked using PYRATE [4].

The stability of the vacuum was analysed by checking the positivity
conditions for quartic couplings (4), running with energy up to the Planck
scale. The beta function of λS was found to be always positive, therefore
only two of those conditions are non-trivial (Fig. 1). The possibility to
alleviate the problem of vacuum stability, in this model, comes mainly from
the extra freedom (that is not present in the SM) to choose parameters of
the extended scalar potential. If |κ| at low energy scale is large enough, then
λH is positive at all scales even if low initial values were chosen. However,
for κ < 0, the third condition requires λH(mt) to be larger. The stability
regions grows for medium values of gx and diminishes for large, but only
moderately, as this coupling is present exclusively in the beta function of λS
and affects the running of others indirectly.
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Fig. 1. Contours of constant energy scale Q∗ at which the first (upper panel) or
the third (lower panel) of the positivity conditions (4) is violated. In the dark grey
areas, quartic couplings become non-perturbative below the Planck scale.

4. Experimental bounds

Properties of the Higgs within the VDM model agree with those of the
SM, however some variation within the limits of experimental and theoret-
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ical uncertainties is allowed. Here, there is a factor (cosα) that equally
suppresses all the couplings of the observed Higgs. It is constrained by the
global signal strength µ. The recent combined analysis of the ATLAS and
CMS data [5] gives a following value of µ and resulting limit on sinα

µ = 1.09± 0.11 , sinα < 0.36 at 95% C.L. (6)

In the mass range of 12 < Mh2 < 90 GeV, stronger bounds come from the
Higgs production process e+e− → Zh2 at LEP. Finally, measurements of
ATLAS restricts the invisible Higgs branching ratio to values BRinv < 0.23
at 95% C.L. [6]. The branching ratio h1 → Z ′Z ′, h2h2 dominate the Higgs
decays, unless respective couplings gx or κ are tiny. Consequently, we exclude
regions in the parameter space, where these decays are kinematically allowed.

We assume that the dark matter was thermally produced in the early
universe and compute its relic abundance with the use of micrOMEGAs [7].
Dark matter–nucleon scattering is mediated by Higgs particles and their
mass-degeneracy leads to destructive interference in the cross section

σZ′N =
µ̄2

4π
g2xg

2
hNN sin2 2α

(
M−2h1 −M

−2
h2

)2
, (7)

where µ̄ is the reduced mass and ghNN is the effective Higgs to nucleon
coupling [8]. We performed a scan in the parameter space and found points
that are within 5σ limit from the Planck value [9] of the relic abundance
ΩDMh

2 = 0.1199± 0.0022 and satisfy all the collider constraints (Fig. 2).
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Fig. 2. DM–nucleon scattering cross section versus mass of the dark matter for
points in the parameter space satisfying all other experimental constraints.

5. Vector dark matter in multi-component scenario

It is worth to mention, that it is possible to extend the single VDM
scenario discussed so far to a multi-component dark matter model. It can
be done by adding an extra dark matter field χ charged under U(1)X (and
neutral under SM symmetries), which couples minimally to Z ′. The vector
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boson remains stable, if the decay into χχ is kinematically forbidden (MZ′ <
2Mχ), whereas other decays of Z ′ and χ are disallowed by the symmetry (1)
and conservation of χ charge. If the second DM candidate is a fermion, its
Majorana mass can be generated via term SχCχ+ H.c. provided its charge
equals −1/2 of the scalar S charge. The field χ communicates with the SM
mainly via S. Details of the model will be discussed elsewhere.

6. Summary and conclusions

The vector dark matter model is a theory, which can explain the observed
DM relic abundance. It leads to the attractive prediction of the second Higgs
boson and allows to alleviate the problem of the vacuum stability. This
model can be further tested by sensitive DM direct detection experiments
and at LHC, by refined measurements of the Higgs or searches for other
scalars. A two-component extension of the model is possible.

This work has been supported in part by the National Science Centre
(Poland) as research projects Nos. DEC-2014/15/B/ST2/00108 and DEC-
2014/13/B/ST2/03969.
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