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Adding a single gauge singlet and a second Higgs doublet to the orig-
inal Standard Model allows an explanation of the observed smallness of
the neutrino masses using the seesaw mechanism. This model predicts two
neutral fermions with vanishing mass. But the one-loop contribution to
the neutral fermion masses due to the second Higgs doublet lifts this de-
generacy and allows to fit the model parameters to the observed neutrino
mass differences. We present the determination of the additional Yukawa
couplings that appear in our model by requiring that our model predicts
the correct mass differences and mixings in the neutrino sector.
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1. Lagrangian and parameters of the model

Adding to the Standard Model (SM) with 3 generations a single gauge
singlet fermion NR and a second Higgs doublet gives us our model, the
312-νSM, introduced in [1]. For the scalar sector, we get a general Two
Higgs doublet model (2HDM), as described in [2]. We use the relations
of [2] to express nine real parameters of the Higgs potential by four masses
of the physical Higgs particles, and two mixing angles between the neutral
Higgses. The remaining parameters are not physical [2]. In this basis, only
the first Higgs doublet develops a vacuum expectation value (vev) v.

The seesaw mechanism includes a Majorana mass term

LMaj = 1
2M

∗
RN̄
′CN̄ ′> + h.c. = −1

2M
∗
RN̄
′N̂ ′ − 1

2MRN̂ ′N
′ , (1)

where N ′ denotes the right projection of the Majorana fermion N , C is the
charge conjugation matrix, MR is the mass parameter of the singlet, and

∗ Presented by T. Gajdosik at the XXXIX International Conference of Theoretical
Physics “Matter to the Deepest”, Ustroń, Poland, September 13–18, 2015.

(2323)



2324 T. Gajdosik et al.

N̂ = γ0CN∗ denotes the Lorentz covariant conjugate [3] of the field N , that
in our case also satisfies the Majorana condition N̂ = N . To couple the
gauge singlet to other fields in the most general way, we have to add three
Yukawa couplings (Y

(2)
L )jk and (Y

(1,2)
N )j to get the Yukawa Lagrangian

LYuk = −¯̀
Ljφa

(
Y

(a)
L

)
jk
eRk − ¯̀

Ljφ̃a

(
Y

(a)
N

)
j
N + h.c. , (2)

where we write the generation indices j and k explicitly. Note, that the two
Yukawa couplings to the gauge singlet define two (in general independent)
directions in the three-dimensional lepton flavour space.

Inserting the vacuum expectation value v into the Yukawa Lagrangian
Eq. (2), we get the neutrino mass terms written in the interaction eigenstates
νLj and N . These mass terms are diagonalised by the superpositions

νLj = U∗αjPLζα , N ′ = PRN = UαNPRζα , (3)

where ζα are the physical Majorana mass eigenstates with masses mα. The
diagonalization can also be written in a matrix form U(ν)MνU

>
(ν) = diag(mα)

with the mass matrix

Mν =

(
ML M>D
MD MR

)
, with

ML = 03×3 ,

MD = v√
2
Y

(1)
N ,

(4)

and the neutrino mixing matrix

U(ν) =

(
Uαj
UαN

)
=


~a> 0
~b> 0
ic~c> −is
s~c> c

 , where
c2 = m4

m4+m3
,

s2 = m3
m4+m3

.
(5)

The diagonalization gives the following conditions

MD · ~a ∗ = MD ·~b∗ = 0 and MD ·M †D = m2
D = m3m4 . (6)

The unitarity of U(ν) is guaranteed if ~a, ~b, ~c are orthonormal complex vectors
and, in addition, the relationMD ·~c ∗ = mD, with the solution ~c> = m−1D MD

holds.
Using the idea of [1] and implementing it in a similar way as in [4], we

define the overall phase of ~b to get the scalar quantity d as real and positive.
We introduce also the overlap between the Yukawa couplings d′:

d := Y
(2)
N ·~b∗ =

(
Y

(2)
N

)
j

(
~b
)∗
j
, (7)

d′ := Y
(2)
N · Y (1)†

N =

√
2

v
Y

(2)
N ·M †D =

√
2mD

v
Y

(2)
N · ~c ∗ . (8)

There is no freedom for d′, as it is given by the input of the Yukawa couplings.
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Using the diagonalization conditions, Eq. (6), the orthogonality of ~a, ~b,
~c, and the definitions of d and d′, we can determine the tree level mixing
matrix U(ν) by (1) taking ~a orthonormal to the two Yukawa couplings, Y (1)

N

and Y (2)
N , (2) ~c = Y

(1)
N /|Y (1)

N |, and (3) ~b orthonormal to ~a and ~c:

(~a )j := εjk`

(
Y

(1)
N

)
k

(
Y

(2)
N

)
`

/(∣∣∣Y (1)
N

∣∣∣ ∣∣∣Y (2)
N

∣∣∣) , (9)

~b> = d

(∣∣∣Y (1)
N

∣∣∣2 Y (2)
N − d′Y (1)

N

)/(∣∣∣Y (1)
N

∣∣∣2 ∣∣∣Y (2)
N

∣∣∣2 − ∣∣d′∣∣2) . (10)

Assuming s/c =
√
m3/m4 � 1, we can identify the matrix U made of ~a,

~b, and ~c with the PMNS-matrix. It allows us to determine the two Yukawa
couplings to the singlet by the second and third row of the PMNS matrix
and the three parameters d, d′, and mD =

√
m3m4:

Y
(1)
N =

√
2mD

v
~c> and Y

(2)
N = d~b> − d′

√
2mD

v
~c> . (11)

2. Generating m2

In an attempt to be more general than [4], we obtain the formula for the
loop correction to the mass of a Majorana fermion, like in [5–8]. We do not
include tadpoles in the contribution from scalars as the tadpole couplings to
ζ1,2 vanish. The predicted mass δmloop

1 = 0 vanishes for ζ1, as expected. We
get the approximate prediction for the mass of ζ2, ignoring m3 compared
to m4,

δmloop
2 ≈ d2

3∑
n=1

Re
[
q2n2
]
m4B0

(
p2,m2

Hn
,m2

4

)
, (12)

where B0 is the Passarino–Veltmann function, used in the convention of
Denner [9]. The definition of qn2 contains the mixing of the neutral Higgses
and is taken from [2]:

q12 = −s12 − ic12s13 , q22 = c12 − is12s13 , q32 = ic13 , (13)

with s1j := sin θ1j and c1j := cos θ1j , the mixing angles of the neutral
Higgses. We set p2 = m2

2 = 0. The formula Eq. (12) seems to indi-
cate that the mass m2 should be proportional to m4 ∼ MR, but since∑3

n=1(Re[qn2])
2 =

∑3
n=1(Im[qn2])

2 = 0, the contributions with m4 alone
in the numerator cancel, leaving only terms ∼ m2

Hj
/m4, which amounts to

the normal seesaw mass, multiplied by d2 and some angles.



2326 T. Gajdosik et al.

Taking the difference between the second lightest neutrino and the light-
est neutrino, which is massless in our model, to be in the experimental 3σ
range [10], we get the allowed band of Yukawa coupling values d as shown
in Fig. 1. A narrow range of the allowed values means that d is basically di-
rectly determined by the measured ∆m2

�. The spikes in the plots come from
cancellations between the contributions of the different Higgses for certain
values of qn2 in connection with their chosen masses. The suppression of the
sum in Eq. (12) requires d to increase in order to give the same value of m2.
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Fig. 1. (Colour on-line) Plot of the restriction on the Yukawa coupling strength d,
coming from the requirement that the loop corrections give the correct mass for the
second lightest neutrino, m2. The allowed region is so thin that upper and lower
bounds appear as a single line. The CP-conserving cases of the Higgs potential are
listed on top, the values of the mixing angle of the neutral Higgses are displayed
on the x̂-axis. We take mH1

= 125 GeV and display the masses of H2, H3 at the
side. The lines in each panel correspond to increasing values of m4 starting from
the bottom: m4 = {200, 2× 104, 2× 106, 2× 108, 2× 1010} GeV.

3. Using also m3

The full renormalisation of our model requires knowledge of the mass of
the heavy singlet state, which is not measured yet. But we can nevertheless
attempt to restrict more model parameters by the additional information
available from the neutrino sector, i.e. the second mass difference and the
measured values of the PMNS-matrix (for the values see [10]). The needed
additional assumption is formulated in [4] and allows us to calculate δmloop

3 ,
while estimating the counter-terms from the variation of the parameters
appearing in Mν , Eq. (4). The requirement that also the third neutrino, ζ3,
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gives the correct ∆m2
atm restricts the value of d′, the other parameter in the

second Yukawa coupling, irrespectively of the neutrino mass ordering. This
possibility is shown in the plots presented at the conference [11].

For small values of the heavy singlet scale, the sub-dominant corrections
due to charged particles in the loop can become of the same size as the mass
m3 itself. In this case, they have to be included in a numerical analysis.

4. Summary

We discussed the constraints of the 312-νSM model parameters. As-
suming that the masses of the particles are known, the measured neutrino
mass differences define the allowed Yukawa coupling strength between the
neutrinos and the Higgs fields.

The authors thank the Lithuanian Academy of Sciences for the support
(the project DaFi2015).
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