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Spherically symmetric, gravitating configurations built of the regularly
distributed gas in equilibrium still admit a singular Weyl curvature. In
contrast to the Black Holes, the singularity located in the center of the gas
cloud is naked — forms the repulsive point-like gravity source. Configura-
tions of this kind can exceed both the Oppenheimer limit and the Bondi
limit.
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1. Introduction: the role of conformal curvature

The Ricci curvature is coupled to matter via the Einstein equations. It
is uniquely defined when the distribution of matter is specified. On the
contrary, the Weyl tensor is a “free parameter” of the theory and can be cho-
sen arbitrary — independently of the matter distribution. The freedom to
arbitrary setting the conformal curvature is seldom disclosed in astrophys-
ical investigations, where the symmetry of the energy-momentum tensor is
usually replicated to metric tensor. This procedure does not result from
the general relativity, neither from observations. Instead, it constitutes an
additional constraint, and eventually results in the loss of generality.

Although the source of the Weyl tensor is not specified, this quantity has
an important geometrical and physical meaning [1]. The Weyl tensor itself
is the source of the geodesic deviation. Conformal curvature acts in the way
similar to the tidal forces [1, 2], as well as it contributes to the ADM mass
of spherical bodies [3].

2. Nakedly-singular gaseous spheres in equilibrium

In this paper, we discuss static, spherically symmetric configurations
with the regularly distributed gas described by the hydrodynamic energy-
momentum tensor. Following the classical Oppenheimer–Volkoff approach [4],
we assume the same symmetry for both the energy-momentum tensor and
the metric tensor

ds2 = −A(r)c2dt2 +
(
1− 2

G

c2
M(r) +Mg

r

)−1
dr2 + r2

(
dϑ2 + sin2 ϑdϕ2

)
.

(1)
However, we relax the assumption of the metric tensor regularity [4, 5]. The
problem differs from the classical TOV problem in non-vanishing constant
of integrationMg which is explicitly present in the metrics (1). The Einstein
equations Gµν = κTµν reduce to non-autonomous dynamical system

M ′(r) = 4πr2ρ(r) , (2)

p′(r) = −G
(
c2ρ(r) + p(r)

) M(r) +Mg + 4πr3p(r)c−2

r (r − 2G(M(r) +Mg)c−2)
. (3)

By computing the Carminati–McLenaghan invariants [6, 7]

R1 = 31/3R2
2/3 , (4)

R3 =
7R2

4/3

4 31/3
, (5)

W1 = 61/3W2
2/3 , (6)
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M2 = M3 =
(
2
3

)1/3R2
2/3W2

2/3 , (7)

M4 = −6−2/3R2W2
2/3 , (8)

M5 = 3−2/3R2
2/3W2 , (9)

where

R2 = 3

(
1

4
κ
(
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))3

, (10)

W2 = −6
(
c2κ

8πr3

(
M(r) +Mg −

4

3
πr3ρ

))3

, (11)

we establish that Mg is responsible for the conformal curvature singularity
(Mg enters W1 and W2 invariants), and does not affect the the regularity
of the matter distribution (is absent in R1, R2, R2). In order to avoid a
collapse to Black Hole, the constant Mg must be negative. The singularity
is naked [8–13] and the gaseous cloud encloses a point-like repulsive gravity
source at the center.

3. The nonrelativistic neutron polytropic approximation

To build a model, we consider the Fermi gas in nonrelativistic regime
with the equation of state approximated by the polytrope [14, 15]

ρ(p) =
1

c2

(p
k

)1
Γ
, Γ = 5/3 , k =

~2

15π2mN

(
3π2

c2mN

)Γ
. (12)

We assume that maximal pressure pmax = p(rmax) does not exceed 1034 Pa,
as for the regular neutron star. Python language library scipy is used with
the vode integrator in order to numerically integrate the system (2)–(3) with
the equation of state (12). We adopt the backward differentiation formulas
BDF-method (http://www.netlib.org/ode/vode). The central repulsive
singularity sweeps the gas out. The region of maximal density forms at
some distance rmax from the center. A typical profile is shown in Fig. 1.

The integration was repeated for 59 different values of rmax from the
range rmax ∈ (1 km, 102.5 km), and for 10 different pmax ∈ (5.3×1033 Pa, 4.6×
1034 Pa) which gives altogether the matrix of 590 profiles. For each profile,
the ADM mass, the configuration radius rs, the repulsive gravity counter-
part Mg, and the gravitational surface redshift z were found. Details of
the integration procedure are explained in [16]. In the set of profiles under
investigation, the configuration of the maximal redshift has parameters:

MADM = 31 M� , rs = 92 km , z = 11 . (13)
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Fig. 1. The pressure profile in 2+ 1 dimensional visualization of a typical nakedly-
singular, spherical, polytropic cloud.

The maximal value for z (13) comes from the limits for polytrope approx-
imation for the Fermi gas of neutrons and may change with the change of
the equation of state. When the regularity conditions for metrics and the
cosmic censorship are relaxed, the Oppenheimer limit [4] and the Bondi [17]
limit are exceeded. The maximal gravitational redshift we obtained belongs
to the range which is presently reserved for cosmology.
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