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In the framework of a two Higgs doublet model, we try to explain
lepton masses and mixing matrix elements assuming that neutrinos are
Dirac particles. Discrete family symmetry groups, which are subgroups of
U(3) up to the order of 1025 are considered. Like in the Standard Model
with one Higgs doublet, we found that discrete family symmetries do not
give satisfactory answer to these basic questions in the flavour problem.
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1. Introduction

The Standard Model is so far the best theory describing particles and
their interactions. However, it does not explain many issues. Only in the
lepton sector we have 10 arbitrary parameters (6 masses+ 3 mixing an-
gles+ 1 CP phase) in the case of Dirac neutrinos and even 12 parameters
(6 masses+ 3 mixing angles+ 3 CP phases) if we assume neutrinos to be
of Majorana nature. Moreover, the existence of 3 families of quarks and
leptons, the nature of neutrinos, the mechanism of neutrino mass genera-
tion and values of CP-violating phases are still unresolved mysteries within
the framework of this theory. The enumerated problems are the part of the
so-called “flavour problem” [1].
∗ Presented by M. Richter at the XXXIX International Conference of Theoretical
Physics “Matter to the Deepest”, Ustroń, Poland, September 13–18, 2015.
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Until 2012, it was a common consensus that we were on the right path
to find a solution: the TriBiMaximal (TBM) mixing [2] fully explained pa-
rameters determining the PMNS mixing matrix. However, thanks to more
precise measurements [3–6], it has been discovered that the reactor angle
cannot be assumed to be zero. This fact resulted in the need to find another
pattern describing the mixing. After 2012, many ideas aimed at solving this
problem. Most of them were based on a simple extension of the Standard
Model by supplementing it with a discrete symmetry group [7–9]. It was
noticed that in order to get a non-trivial mixing, the family symmetry must
be broken into two residual symmetries generating separately the forms of
mass matrices in the charged lepton and the neutrino sector. In our opinion,
this idea is not so convincing: we impose full symmetry, which subsequently
must be broken into its subgroups. Anyway, to our knowledge, that reason-
ing did not lead to any reasonable results: the form of the mixing matrix
was not clarified, any prediction for the masses has not been obtained.

All these aspects motivated us to give a different approach a try. Our
idea consists in extending not only symmetry of the Standard Model, but
also the scalar sector. This concept has been already briefly described in [10].

2. The symmetry group

As it has been already written in the introduction, our model focuses on
examination of the consequences of adding to SU(3)C×SU(2)L×U(1)Y gauge
symmetry some extra group GF with some modification of the Higgs part of
the Lagrangian. In our approach, we assume that GF (flavour symmetry) is
a finite and non-Abelian group. The reason for this choice is quite obvious:
TBM pattern was based on A4 group. The long-lasting success of this model
gave us some indications to search for solution in this “area”.

Apart from that, we expect from GF to be the subgroup of U(3). Another
condition for the symmetry comes from the Yukawa Lagrangian

LY = −
∑

α,β=e,µ,τ

∑
j=1,2

[(
hlj

)
αβ
L̄αLφjlβR + (hνj )αβL̄αLφ̃jνβR

]
+ H.c. , (1)

where hl, hν are Yukawa couplings, LL denotes left-handed lepton doublet,
νR, lR stand for right-handed singlets of SU(2)L × U(1)Y (of neutrino and
charged lepton field respectively). Note that instead of one Higgs field we
put here a sum over 2 doublets (φ̃ = iσ2φ

∗). This is the extension of the
scalar sector, which we have mentioned before.

From the picture presented above, the last requirement for the group
naturally arises. We want the following fields’ transformation laws to be
valid
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L′αL =
(
AL
)
α,χ
LχL , l′βR =

(
Al
)
β,γ

lγR ,

ν ′βR = (Aν)β,δ νδR , φ′i =
(
Aφ
)
i,k
φk , (2)

where AL, Al,Aν ,Aφ are irreducible representations of the flavour group GF.
Thus, it becomes quite clear, that 2- and 3-dimensional irreducible represen-
tations of GF are needed. AL, Al and Aν should be 3-dimensional matrices,
while Aφ must be a 2-dimensional matrix as there are two Higgs doublets in
our model.

At this point, attributes of the wanted symmetry can be easily estab-
lished. Summarising, the desired group should be finite and non-Abelian,
it should be a subgroup of U(3) and it should have 2- and 3-dimensional
irreducible representations. At this stage, to simplify our search, we take
into account only finite groups, which cannot be written as a direct products
with cyclic groups. In order to find the groups fulfilling all these require-
ments, it is convenient to make use of the program GAP for discrete algebra
computation [11]. Besides, since we are interested in finding the groups of
small orders, the application of the Small Group Library [12, 13] together
with the REPSN [14] package, which provides representations, is necessary.
Among all groups implemented in this library, up to the order of 1025, we
have found that 62 groups fulfil our search criteria. Among them 17 are
subgroups of SU(3).

All considered subgroups of U(3) can be identified with the classification
of finite subgroups by Blichfeldt, Miller and Dickson [15] and Ludl [16]. The
results are presented in Table I.

TABLE I

Classification of considered subgroups of U(3).

[[i, j]] The group description The group classification SU(3)?

[[24,12]] S4 ∆(24) = ∆(6× 22) X
[[48,30]] A4 o C4 S4(2)
[[54,8]] ((C3 × C3) o C3) o C2 ∆(54) = ∆(6× 32) X
[[96,64]] ((C4 × C4) o C3) o C2 ∆(96) = ∆(6× 42) X
[[96,65]] A4 o C8 S4(3)
[[108,11]] ((C3 × C3) o C3) o C4 ∆(6× 32, 2)
[[150,5]] ((C5 × C5) o C3) o C2 ∆(150) = ∆(6× 52) X
[[162,10]] (((C3 × C3) o C3 × C3) o C3) o C2

[[162,12]] ((C9 × C3) o C3) o C2

[[162,14]] ((C9 × C3) o C3) o C2 D(9, 1, 1; 2, 1, 1) X
[[162,44]] ((C9 × C3) o C3) o C2 ∆′(6× 32, 2, 1)
[[192,182]] ((C4 × C4) o C3) o C4 ∆(6× 42, 2)
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Continuation of TABLE I.

[[i, j]] The group description The group classification SU(3)?

[[192,186]] A4 o C16 S4(4)
[[216,17]] ((C3 × C3) o C3) o C8 ∆(6× 32, 4)
[[216,88]] ((C3 × C3) o C3) oQ8 Σ(72φ) X
[[216,95]] ((C6 × C6) o C3) o C2 ∆(216) = ∆(6× 62) X
[[294,7]] ((C7 × C7) o C3) o C2 ∆(294) = ∆(6× 72) X
[[300,13]] ((C5 × C5) o C3) o C4 ∆(6× 52, 2)
[[324,13]] (((C3 × C3) o C3) o C4) o C2

[[324,15]] ((C9 × C3) o C3) o C4

[[324,17]] (((C3 × C3) o C3) o C4) o C2

[[324,102]] ((C9 × C3) o C3) o C4 ∆′(6× 32, 2, 2)
[[384,568]] ((C8 × C8) o C3) o C2 ∆(384) = ∆(6× 82) X
[[384,571]] ((C4 × C4) o C3) o C8 ∆(6× 42, 3)
[[384,581]] A4 o C32 S4(5)
[[432,33]] ((C3 × C3) o C3) o C16 ∆(6× 32, 4)
[[432,239]] (((C3 × C3) o C3) o C4) o C4

[[432,260]] ((C6 × C6) o C3) o C4 ∆(6× 62, 2)
[[486,26]] ((C27 × C3) o C3) o C2

[[486,28]] ((C27 × C3) o C3) o C2

[[486,61]] ((C9 × C9) o C3) o C2 ∆(486) = ∆(6× 92) X
[[486,125]] ((C9 × C3)× C3) o C3) o C2

[[486,164]] ((C27 × C3) o C3) o C2 ∆′(6× 32, 3, 1)
[[588,16]] ((C7 × C7) o C3) o C4 ∆(6× 72, 2)
[[600,45]] ((C5 × C5) o C3) o C8 ∆(6× 52, 4)
[600,179]] ((C10 × C10) o C3) o C2 ∆(600) = ∆(6× 102) X
[[648,19]] (((C3 × C3) o C3)× C8) o C3

[[648,21]] ((C9 × C3) o C3) o C8

[[648,23]] (((C3 × C3) o C3)× C8) o C3

[[648,244]] ((C9 × C3) o C3) o C8 ∆′(6× 32, 2, 3)
[[648,259]] ((C18 × C6) o C3) o C2 D(3, 1, 2; 9, 3, 2) X
[[648,260]] ((C18 × C6) o C3) o C2

[[648,266]] ((C6 × C6 × C3) o C3) o C2

[[648,531]] C3.(((C3 × C3) oQ3) o C3)
[[648,532]] (((C3 × C3) o C3)×Q8) o C3 Σ(216φ) X
[[648,533]] (((C3 × C3) o C3)×Q8) o C3

[[648,551]] ((C9 × C3) o C3) oQ8

[[648,563]] ((C18 × C6) o C3) o C2

[[726,5]] ((C11 × C11) o C3) o C2 ∆(726) = ∆(6× 112) X
[[768,1085333]] ((C4 × C4) o C3) o C16 ∆(6× 42, 8)
[[768,1085335]] ((C8 × C8) o C3) o C4 ∆(6× 82, 2)
[[768,1085351]] A4 o C64 S4(6)

[[864,69] ((C3 × C3) o C3) o C32 ∆(6× 32, 16)
[[864,675]] (((C3 × C3) o C3) o C4) o C8

[[864,701]] ((C12 × C12) o C3) o C2 ∆(864) = ∆(6× 122) X
[[864,703]] ((C6 × C6) o C3) o C8 ∆(6× 62, 4)
[[972,29]] ((C27 × C3) o C3) o C4

[[972,31]] ((C27 × C3) o C3) o C4

[[972,64]] ((C9 × C9) o C3) o C4 ∆(6× 92, 2)
[[972,309]] (((C9 × C3) o C3) o C4) o C3

[[972,348]] ((C27 × C3) o C3) o C4 ∆′(6× 32, 3, 2)
[[1014,7]] ((C13 × C13) o C3) o C2 ∆(1014) = ∆(6× 132) X



The Flavour Problem and the Family Symmetry Beyond the SM 2403

3. The invariance equation and its interpretation

Here, we introduce the main concept, which is the requirement imposed
on the Yukawa Lagrangian (Eq. (1)) to be invariant under transformations
of Eq. (2). In other words, we demand the following relations to be fulfilled:

2∑
i=1

(
Aφ
)
ik

(
AL†

)
αγ

(
hli

)
γδ

(
Al
)
δβ

=
[
hlk

]
αβ

,

2∑
i=1

(
Aφ
)∗
ik

(
AL†

)
αγ

(hνi )γδ

(
Al
)
δβ

= [hνk]αβ . (3)

We can easily simplify these relations by swapping the indices:

2∑
i=1

(Aφ)Tki

(
AL†

)
αγ

(
Al
)T
βδ

(
hli

)
γδ

=
[
hlk

]
αβ

,

2∑
i=1

(
Aφ
)†
ki

(
AL†

)
αγ

(Aν)Tβδ (hνi )γδ = [hνk]αβ . (4)

It is possible to present expressions derived in Eq. (4) as two eigenproblems

N1Γ
l = Γ l , N2Γ

ν = Γ ν , (5)

where
Γ l =

(
hl1
hl2

)
, Γ ν =

(
hν1
hν2

)
, (6)

and

N1 =
(
Aφ
)T
⊗
(
AL
)† ⊗ (Al)T , N2 =

(
Aφ
)†
⊗
(
AL
)† ⊗ (Aν)T . (7)

Note that Γ l, Γ ν are the vectors composed of appropriate elements of ma-
trices hlk and hνk respectively. In both cases, N1 and N2 are 18-dimensional.

The way of solving equations Eq. (5) is described in detail in [17]. In
general, the algorithm can be summarized as follows: construction of N1

and N2 for all generators of the considered flavour group GF, looking for
the eigensubspace for all generators, determining the common eigensubspace,
establishing the base vector of the common eigensubspace.

To conclude, the base vector of the common eigensubspace constitute
the solution. However, the first step introduced in the presented algorithm
requires some comment. In calculations, it is necessary to take into account
only the generators’ representations. This non-trivial fact results from the
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following proposition (see e.g. [17]): if the invariance equations Eq. (4) are
valid for the representations of some generators g1 and g2 of the flavour
group GF, then they are automatically satisfied by the representations of
their product g3 = g1g2.

It turns out that the solution of the invariance equation has got simple
mathematical interpretation. It can be proven (see e.g. [17]) that Yukawa
couplings hν and hl play the role of Clebsch–Gordan coefficients for the
following decompositions:

AL ⊗
(
Al
)∗

= ⊕λAλ , AL ⊗ (Aν)∗ = ⊕λAλ , (8)

where in the first case, we look for the 2-dimensional representation (Aφ =
Aλ for some λ), while in the second case, we demand the existence of (Aφ)∗ =
Aλ for some λ. This condition is necessary to get some solution for the
invariance equation.

4. The mass matrices and the mixing matrix in the lepton sector

Having the Yukawa couplings: hl1,2 and hν1,2 (see the previous section)
and vacuum expectation values of the Higgs fields vi, one can get the mass
matrices

M l
α,β =

1√
2

2∑
i=1

vi

(
hli

)
α,β

, Mν
α,β =

1√
2

2∑
i=1

vi (hνi )α,β . (9)

To proceed with the calculations, one should diagonalize these matrices.
It is commonly known in the literature that in order to derive the mass
eigenvalues, it is necessary to use bi-unitary transformation

V l†
L M

lV l
R = M l

diag , V ν†
L MνV ν

R = Mν
diag . (10)

In practice, one diagonalizes M lM l† and MνMν† instead of Mν or M l

since in this case, one needs only one unitary matrix to perform the diago-
nalization

V l†
L

(
M lM l†

)
V l

L =
(
M lM l†

)
diag

, V ν†
L

(
MνMν†

)
V ν

L =
(
MνMν†

)
diag

.

From the obtained matrices V l
L and V ν

L , one can easily create the mixing
matrix

UPMNS = V l†
L V

ν
L . (11)

Now, we can try to find such a free model parameters, which give correct
values of the lepton masses and mixing matrix elements [18].

Our preliminary results indicate that in the set of the examined groups
there is none, which is able to reproduce the mixing matrix elements and
the lepton masses.
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5. Conclusions
Clearly, the results obtained so far are not in agreement with experi-

ment. If it turned out that results match the experimental data, it would
be necessary to have a second look at the Higgs potential. We would need
to know whether the Higgs potential meets all experimental requirements,
gives two different vacuum expectation values, and all additional Higgs par-
ticles satisfy existing experimental bounds: e.g. the flavour changing neutral
current is small.

In the nearest future, we plan to study the model with another extensions
of the scalar sector (for example, with three Higgs doublets) and similar
models for Majorana neutrinos. Apart from that, we are going to examine
the model with left–right symmetry where additional sterile neutrinos are
present.

This work has been supported by the Polish Ministry of Science and
Higher Education under grant No. UMO-2013/09/B/ST2/03382.
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