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1. Introduction

The 3 × 3 mixing matrix or PMNS matrix U in the lepton sector has
two large and one small mixing angle. It could be that this peculiar feature,
which is in stark contrast to the CKM matrix in the quark sector, can be
explained through an underlying flavour symmetry. Many attempts in this
direction have been made, but no convincing scenario has emerged up to
now. Some years ago, the idea was put forward that the structure of U
is connected with residual symmetries in the charged-lepton and neutrino
mass matrices [1]. In this approach, which is completely independent of any
realization of this idea in a model, the diagonalization of the mass matrices
is effectively replaced by the diagonalization of the symmetry transformation
matrices of the residual symmetries. Using the notation |U |2 ≡

(
|Uij |2

)
, it

turns out that this approach can either determine |U |2 completely or fix one
of its rows or one of its columns.

∗ Presented by W. Grimus at the XXXIX International Conference of Theoretical
Physics “Matter to the Deepest”, Ustroń, Poland, September 13–18, 2015.

(2407)



2408 R.M. Fonseca, W. Grimus

In [2], we have demonstrated that a complete classification of all possible
|U |2, up to independent permutations on |U |2 from the left and right, can
be performed under the following assumptions:

— There are three lepton flavours.
— Neutrinos have Majorana nature.
— The flavour group G is finite.

As a result, we have found that there are 17 sporadic mixing patterns and one
infinite series associated with a genuine three-flavour mixing matrix U . All
these mixing patterns had been found before assuming specific groups [3, 4].
Thus, our analysis demonstrates that there are no possible other mixing
patterns, no matter which finite flavour group G one begins with.

We stress that the finiteness of G is an ad hoc assumption for the mathe-
matical treatment of the problem. It is absolutely crucial for the arguments
used in [2].

2. Residual symmetries

In order to fix the notation, we denote the mass terms of charged leptons
and neutrinos by

Lmass = −¯̀
LM``R + 1

2ν
T
LC
−1MννL + H.c. , (1)

where the indices L and R indicate the chiralities of the fermion fields and
C is the charge-conjugation matrix. Due to the assumed Majorana nature
of the neutrinos, we have MT

ν = Mν . Diagonalization of the mass matrices
proceeds via

U †`M`M
†
`U` = diag

(
m2
e,m

2
µ,m

2
τ

)
, UTν MνUν = diag (m1,m2,m3) ,

(2)
leading to the mixing matrix U = U †`Uν .

The idea of residual symmetries [1] rests on the fact that the `L and νL
belong to the same gauge doublet, therefore, in a weak basis they must
belong to the same multiplet of the flavour group G, which is broken to the
subgroup G` in the charged-lepton sector and to Gν in the neutrino sector.
Invariance of the mass matrices under the residual groups is formulated as

T ∈ G` ⇒ T †M`M
†
` T = M`M

†
` , S ∈ Gν ⇒ STMνS = Mν . (3)

Since the charged-lepton and neutrino mass spectra are non-degenerate, both
G` and Gν must be Abelian and, therefore,

G` ⊆ U(1)×U(1)×U(1) , Gν ⊆ Z2 × Z2 × Z2 . (4)

Consequently, all T ∈ G` together with M`M
†
` are simultaneously diagonal-

izable, and the same is true for all S ∈ G` and M †νMν .
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In essence, the diagonalization of M`M
†
` is replaced by the diagonaliza-

tion of the T ∈ G` and the diagonalization of M †νMν is replaced by the
diagonalization of the S ∈ Gν .

Some remarks are in order. If a single T ∈ G` has non-degenerate eigen-
values, then U` is uniquely determined and G` ∼= ZN with a suitable N . In
this context, it is sufficient that there is one such T in G`. If all T ∈ G` are
degenerate, one can show [2] that one can confine oneself to two generators
T1, T2 of G` and G` ∼= K ∼= Z2 × Z2, where K is Klein’s four group. With
regard to Gν , one can limit oneself to Gν ∼= K by requiring that all S ∈ Gν
have detS = 1.

It is important to realize what the approach of residual symmetries
achieves and what not. Since U` is determined by the diagonalization of
the T only up to a diagonal matrix of phase factors from the right and the
analogous statement holds for Uν , residual symmetries cannot fix Majorana
phases. Moreover, since we can switch from a representation of G to its
complex conjugate representation, the sign of the CKM-type phase in U is
not determined either. These two statements can be subsumed by saying
that with residual symmetries only |U |2 can be determined. Since |U |2 orig-
inates in the diagonalization of representation matrices of G, the resulting
entries of |U |2 are pure numbers determined by group theory, independent
of the parameters of any underlying theory. In addition, this approach does
not make any connection to lepton masses. Therefore, |U |2 can only be
determined up to independent permutations from the left and right.

In order to go from groups to mixing matrices |U |2, one first has to choose
a group G which has the subgroup Gν = K. Then, one has to search for all
subgroups G` of G which completely fix U`. Thereafter, one has to compute
|U |2 for all these subgroups. Many authors have chosen this approach —
see [2–4] and references therein.

However, a general analysis has to be group independent. It turns out
that the key to the general analysis is the determination of all possible
forms of |T | ≡ (|Tij |) with the help of a theorem on vanishing sums of roots
of unity [5], which has already been used in such a context before in [6].

3. General analysis

In order to determine the possible forms of |T |, it is useful to choose a
basis where Gν = {1, S1, S2, S3} with

S1 = diag (1,−1,−1) , S2 = diag (−1, 1,−1) , S3 = S1S2 . (5)

In this basis, Uν = 1, U = U †` and UTU † = T̂ is diagonal.
In the following, P1, P2, P are 3 × 3 permutation matrices. There is a

series of steps [2] that leads to possible mixing patterns:
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1. determination of the five basic forms of |T | up to permutations P1|T |P2,

2. determination of the internal (CKM-type) phase of T ,

3. finding all inequivalent forms of |T | through |T | → |T |P ,

4. exclusion of two forms of |T | which do not lead to finite groups,

5. determination of external (Majorana-type) phases of T ,

6. computation of possible patterns of |U |2 up to permutations P1|U |2P2

from the possible matrices T .

Here, we will only discuss the first step. For the other steps, we refer the
reader to [2]. In relation to step 3, we note that two matrices T , T ′ are
equivalent, i.e. they lead to the same |U |2 modulo permutations, if they are
related by T ′ = V †TV such that V is a permutation matrix times a diagonal
matrix of phase factors.

In order to perform step 1, we consider the matrices Y (ij) ≡ T †SiTSj
of G. With

S−1j Y (ij)Sj =
(
Y (ij)

)†
, detY (ij) = 1 (6)

we see that the eigenvalues of Y (ij) must be 1, λ(ij), (λ(ij))∗. Due to the
finiteness of G, all λ(ij) have to be roots of unity. Because of

∑3
k=1 Sk = −1,

3∑
k=1

TrY (kj) =
3∑

k=1

TrY (ik) = 1 . (7)

Written in terms of the eigenvalues, these equations give

3∑
k=1

(
λ(kj) + λ(kj)

∗)
+ 2 =

3∑
k=1

(
λ(ik) + λ(ik)

∗)
+ 2 = 0 ∀ i, j = 1, 2, 3 . (8)

It is not difficult to show that there is a relation between |Tij | and the
eigenvalues λ(ij) given by

|Tij |2 = 1
2

(
1 + Reλ(ij)

)
. (9)

Therefore, the generic equation one has to solve is

3∑
k=1

(λk + λ∗k) + 2 = 0 (10)
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with roots of unity λk. Using a theorem of Conway and Jones [5], one can
prove that equation (10) has, up to reordering and complex conjugation,
only the three solutions

(λ1, λ2, λ3) =


(i, ω, ω) ,(
ω, β, β2

)
,

(−1, λ, −λ)

(11)

with ω = e2πi/3, β = e2πi/5 and λ = eiϑ being an arbitrary root of unity.
Any solution (λ1, λ2, λ3) of equation (10) can correspond via equation (9)

to a row or a column of |T |. In order to combine the solutions of equation (10)
to matrices |T |, one must bear in mind that T is unitary, which rules out
quite a few combinations. Up to independent permutations from the left
and right, there are only five forms of |T |. Two of these forms do not lead
to a finite flavour group and a third one gives only one sporadic genuine
three-flavour mixing pattern. Thus, the two most relevant forms are

|T | =

 0 1√
2

1√
2

1√
2

1
2

1
2

1√
2

1
2

1
2

 (12)

and

|T | =


1
2

√
5−1
4

√
5+1
4√

5+1
4

1
2

√
5−1
4√

5−1
4

√
5+1
4

1
2

 . (13)

For the further steps in the derivation of the mixing patterns, see [2].

4. Results

Confining ourselves to genuine three-flavour mixing patterns, we have
found that, under the assumptions displayed in Section 1, residual symme-
tries lead to 17 sporadic patterns of |U |2 and one series. Using data on
lepton mixing, it turns out that all sporadic cases are ruled out. The mixing
pattern of the infinite series is given by

|U |2 =
1

3

 1 + Reσ 1 1− Reσ
1 + Re (ωσ) 1 1− Re (ωσ)
1 + Re

(
ω2σ

)
1 1− Re

(
ω2σ

)
 . (14)

This |U |2 depends on the parameter σ = e2iπp/n, where p/n is a ratio-
nal number, i.e. σ is a root of unity. Clearly, permutation of the rows in
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equation (14) leads to equivalent mixing patterns due to the freedom in σ.
Permutation of the columns, however, leads to three distinct cases in the
usual ordering of charged leptons and neutrino masses, depending in which
column 1/3 is located. Only the choice displayed in equation (14) for which

cos2 θ13 sin2 θ12 = 1/3 (15)

holds is compatible with the data. Because of the specific form of |U |2 in
equation (14), the actual parameter which is restricted by the data on the
mixing angles is Reσ6. Using the fit results of [7], the 3 sigma range of
sin2 θ13 translates into −0.69 . Reσ6 . −0.37. Thus, there is indeed a
range of σ such that the |U |2 of equation (14) is compatible with the data.

In summary, among the mixing patterns obtained by the approach of
residual symmetries, lepton mixing data single out a unique one-parameter
mixing pattern. The rational number occurring in the exponent of the pa-
rameter σ is related to the groups which realize the relevant residual sym-
metries. Such groups are subgroups of SU(3) of type D [8]. Apart from the
correlations between the mixing angles which can be read off from the figure
in [2], a further prediction of equation (14) is a trivial CKM-type phase.
Therefore, a future measurement of CP violation in neutrino oscillations
could be a crucial test of this mixing matrix.

The author thanks the Organizers for their hospitality and the nice and
stimulating atmosphere.

REFERENCES

[1] C.S. Lam, Phys. Rev. Lett. 101, 121602 (2008) [arXiv:0804.2622
[hep-ph]]; Phys. Rev. D 78, 073015 (2008) [arXiv:0809.1185 [hep-ph]].

[2] R.M. Fonseca, W. Grimus, J. High Energy Phys. 1409, 033 (2014)
[arXiv:1405.3678 [hep-ph]].

[3] R. de Adelhart Toorop, F. Feruglio, C. Hagedorn, Nucl. Phys. B 858, 437
(2012) [arXiv:1112.1340 [hep-ph]].

[4] C. Hagedorn, A. Meroni, L. Vitale, J. Phys. A: Math. Theor. 47, 055201
(2014) [arXiv:1307.5308 [hep-ph]].

[5] J.H. Conway, A.J. Jones, Acta Arith. 30, 229 (1976).
[6] W. Grimus, J. Phys. G 40, 075008 (2013) [arXiv:1301.0495 [hep-ph]].
[7] D.V. Forero, M. Tortola, J.W.F. Valle, Phys. Rev. D 90, 093006 (2014)

[arXiv:1405.7540 [hep-ph]].
[8] W. Grimus, P.O. Ludl, J. Phys. A: Math. Theor. 47, 075202 (2014)

[arXiv:1310.3746 [math-ph]].

http://dx.doi.org/10.1103/PhysRevLett.101.121602
http://dx.doi.org/10.1103/PhysRevD.78.073015
http://dx.doi.org/10.1007/JHEP09(2014)033
http://dx.doi.org/10.1016/j.nuclphysb.2012.01.017
http://dx.doi.org/10.1016/j.nuclphysb.2012.01.017
http://dx.doi.org/10.1088/1751-8113/47/5/055201
http://dx.doi.org/10.1088/1751-8113/47/5/055201
http://dx.doi.org/10.1088/0954-3899/40/7/075008
http://dx.doi.org/10.1103/PhysRevD.90.093006
http://dx.doi.org/10.1088/1751-8113/47/7/075202

	1 Introduction
	2 Residual symmetries
	3 General analysis
	4 Results

