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Thermodynamics of the ideal Fermi gas trapped in an external generic
power law potential U =

∑d
i=1 ci|

xi

ai
|ni is investigated systematically from

the grand thermodynamic potential in d-dimensional space. These proper-
ties are explored carefully in the degenerate limit (µ � KBT ), where the
thermodynamic properties are greatly dominated by the Pauli exclusion
principle. Pressure and energy along with the isothermal compressibility
are nonzero at T = 0K. The nonzero value of compressibility implies that
zero point pressure is not a constant but depends on volume.
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1. Introduction

The constrained role of external potential can change the characteristics
of quantum gases [1–6]. Increasing attention was given to the subject after
it was possible to create the Bose–Einstein condensation (BEC) in magnet-
ically trapped alkali gases [7–9]. A lot of studies have been conducted to
understand the behaviour of the ideal Bose gas [10–14] as well as ideal Fermi
gas [11, 12]. However, unlike the Bose gas, Fermi gas does not condense due
to the Pauli exclusion principle. Hence, the question of a large number of
particles occupying a single energy state does not even arise in this case.
At sufficiently low temperature, the Fermi gas displays its own brand of in-
teresting behaviour [11, 12] as its fugacity zF can take unrestricted values:
0 < zF < ∞ [11], unlike the Bose gas. The latter has a restricted value of
fugacity 0 < zB 6 1 [11]. The behaviour of thermodynamic quantities of
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the Fermi gas is remarkably governed by the Pauli exclusion principle. For
instance, the ground state pressure also known as degeneracy pressure [11]
in the ideal Fermi gas is nonzero, unlike the Bose gas or classical gas [11].
Nevertheless, a lot of effort is made towards the understanding of differ-
ent properties of a Fermi system such as magnetism [15], conductivity [16],
transport properties [17], equivalence with the ideal Bose gas [18, 19], di-
mensionality effects [20], degeneracy [21], polylogarithms [22], q-deformed
system [23, 24].

Although the interaction between particles exists in a real system, taking
it into account makes the problem difficult to solve analytically. Neverthe-
less, in order to understand the effect of interactions in quantum gases and
retain the essential physics, we approximately present the real system by
noninteracting particles in the presence of an external potential [2, 25]. The
trapping potential in atomic gases provide the opportunity to manipulate
the quantum statistical effects. Some drastic changes have been noted in the
Bose system [1, 2] under trapping potential. For instance, BEC is possible
in d = 2 in the trapped Bose gas, which was not a case in the ideal Bose
gas [1, 2]. Therefore, it will be interesting to investigate how the trapping po-
tential does change the properties of the Fermi gas. In their work, Li et al.
[4] have presented internal energy, heat capacity, ground state energy of the
Fermi gas under spherically symmetric potential (U = brt) in arbitrary di-
mension. However, in the present study, we have investigated properties of
the ideal Fermi gas under the generic power law potential U =

∑d
i=1 ci|

xi
ai
|ni

in d-dimensions, which will be symmetric under certain choice ni, xi and ci.
Thus, in principle, one can reconstruct the results of Li et al. [4] choosing
this special condition. At first, the density of states has been calculated
which enables us to determine the grand potential. Then, from the grand
potential of the system, the thermodynamic quantities such as internal en-
ergy E, entropy S, pressure P , number of particles N , Helmholtz free en-
ergy A, isothermal compressibility κT , specific heat at constant volume CV
and constant pressure CP , and their ratio are derived. In the high tem-
perature limit, the thermodynamic quantities of free quantum gases reduce
to the form of classical gas [11]. The same trend is observed in the case
of trapped system [1]. Therefore, the low temperature limit of the ther-
modynamic quantities of quantum gases is particularly important, as the
true quantum nature is explicit in that region. In the Bose system, the low
temperature limit refers to condensed phase. It was found that the trapping
potential changes the general criterion of BEC as well as the condition of
jump of specific heat [1, 2]. Thus, the low temperature limit of thermo-
dynamic quantities related to the trapped Fermi system has been examined
using the Sommerfeld expansion [11]. It will be very intriguing to investigate
energy and pressure of the trapped Fermi gas, while the gas is in the degen-
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erate limit, to check whether they remain nonzero under generic trapping
potential at T = 0K. Isothermal compressibility (inverse of bulk modulus)
is also calculated to check whether the ground state pressure has a volume
dependency or it is merely just a constant. A point to note is that in the
Hamiltonian, instead of p2

2m type kinetic part, we have taken aps, where p
denotes momentum, a is constant and s is an arbitrary kinematic parame-
ter. A different kinematic parameter of quantum systems leads to different
characteristics features [1, 27, 28]. Therefore, significant conclusions can be
reached in a more generalised way by using arbitrary kinematic parameter.
In the present study, it is found that the concept of effective volume plays
an important role in the trapped Fermi gas, as seen in the trapped Bose
gas [1].

The report is organized in the following way. The density of states and
grand potential are calculated in Section 2. Section 3 is devoted to inves-
tigating the thermodynamic quantities. Properties of the degenerate Fermi
gas are presented in Section 4. Results and discussions are presented in
Section 5. The report is concluded in Section 6.

2. Density of states and grand potential of Fermi gas under
generic power law potential in d-dimensions

Considering the ideal Fermi gas with kinematic parameter l in a confining
external potential in a d-dimensional space with energy spectrum,

ε(p, xi) = bpl +
d∑
i=1

ci

∣∣∣∣xiai
∣∣∣∣ni , (1)

where p is the momentum, xi is the ith component of coordinate of a particle
and b, l, ai, ci, ni are all positive constants. Note that xi < ai. Here, ci, ai
and ni determine the depth and confinement power of the potential. Using
l = 2, b = 1

2m , one can get the energy spectrum of the Hamiltonian used in
the literature [2, 10–12]. For the free system, all ni −→∞. As |xiai | < 1, the
potential term goes to zero.

Density of states can be obtained from the following formula

ρ(ε) =

∫ ∫
ddrddp

(2π})d
δ(ε− ε(p, r)) . (2)

Therefore, from the above equation, density of states is

ρ(ε) = B
Γ
(
d
l + 1

)
Γ (χ)

εχ−1 , (3)
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where

B =
gVdCd
hdad/l

d∏
i=1

Γ
(

1
ni

+ 1
)

c
1
ni
i

. (4)

Here, Cd = π
d
2

Γ (d/2+1) , g is the spin degeneracy factor, Vd = 2d
∏d
i=1 ai is

the volume of an d-dimensional rectangular whose ith side has length 2ai.
Γ (l) =

∫∞
0 dxxl−1e−x is the gamma function and χ = d

l +
∑d

i=1
1
ni
.

The grand potential for the Fermi system,

q =
∑
ε

ln(1 + z exp(−βε)) , (5)

β = 1
kT , k being the Boltzmann constant and z = exp(βµ) is the fugac-

ity, µ being the chemical potential. Using the Thomas–Fermi semi-classical
approximation [25] and re-writing the previous equation, we get

q = q0 +

∞∫
0

ρ(ε) ln(1 + z exp(−βε)) . (6)

So, using the density of states of Eq. (3), we finally get the grand potential

q = q0 +BΓ

(
d

l
+ 1

)
(kT )χfχ+1(z) , (7)

where q0 = ln(1 + z) and fl(z) is the Fermi function which is defined as

fp(z) =

∞∫
0

dx
xp−1

z−1ex + 1
=
∞∑
j=1

(−1)j−1
zj

jp
. (8)

3. Thermodynamics of the Fermi gas under generic
power law potential in d-dimensions

3.1. Number of particles

The number of particles N can be obtained

N = z

(
∂q

∂z

)
β,V

=N0 +
gCnΓ

(
d
l + 1

)
Vd
∏d
i=1 Γ

(
1
ni

+ 1
)

hdbd/l
∏d
i=1 c

1/ni
i

(kT )χfχ(z) . (9)

Here, N0 = z
1+z is the ground state occupation number.
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Now, we define

V ′d = Vd

d∏
i=1

(
kT

ci

)1/ni

Γ

(
1

ni
+ 1

)
, (10)

λ′ =
hb

1
l

π
1
2 (kT )

1
l

[
d/2 + 1

d/l + 1

]1/d
. (11)

It is noteworthy,

lim
ni→∞

V ′d = Vd , (12)

lim
ni→∞

χ =
d

l
, (13)

lim
l→2,b→ 1

2m

λ′ = λ0 =
h

(2πmkT )1/2
. (14)

Thus, if we choose l = 2 and b = 1
2m from Eq. (14), we get λ0 = h

(2πmkT )1/2
,

which is the thermal wavelength of nonrelativistic massive fermions as well
as massive bosons. However, it should be noted that when l 6= 2, λ′ depends
on dimension. With d = 3 and d = 2, thermal wavelength of photons (bo-
son) and neutrinos (fermion) are, respectively, hc

2π1/2kT
and hc

(2π)1/2kT
which

can be obtained from Eq. (11) by choosing b = c, where c is the velocity of
light. So, one can reproduce the thermal wavelength of both massive and
massless particles from the definition of λ′ with more general energy spec-
trum. But one needs to consider the effects of antiparticles to calculate the
thermodynamic quantities of ultrarelativistic quantum gas [26].

The number of particles equation is then written as

N −N0 = g
V ′d
λ′d

fχ(z) . (15)

The number of particles equation for free massive fermions (with l = 2,
a = 1

2m , all ni −→∞) in d-dimensional space can be obtained from Eq. (15),

N −N0 = g
Vd

λ0
d
f d

2
(z) , (16)

which gives the exact equation for number of particles at d = 3 [11, 12].
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3.2. Internal energy

From the Grand Canonical Ensemble, internal energy E is

E = −
(
∂q

∂β

)
z,V

=
gCnΓ

(
d
l + 1

)
Vd
∏d
i=1 Γ

(
1
ni

+ 1
)

hdbd/l
∏d
i=1 c

1/ni
i

(kT )χ+1fχ+1(z) (17)

= NkTχ
fχ+1(z)

fχ(z)
. (18)

In the case of free massive fermions,

E = NkT
d

2

fd/2+1(z)

fd/2(z)
, (19)

which is in accordance with the exact expression of E for d = 3 [11, 12].
Now, as T −→∞, from Eq. (19), it can be seen that the internal energy

becomes E = NkTχ. For free massive fermions, it is E = d
2NkT , which

becomes 3
2NkT , when d = 3. Thus E approaches the classical value at high

temperature. The same exact trend is seen in the Bose gas too [1].

3.3. Entropy

The entropy S can be obtained from the Grand Canonical Ensemble,

S = kT

(
∂q

∂T

)
z,V

−Nk ln z + kq

= Nk

[
v′d
λ′d

(χ+ 1)fχ+1(z)− ln z

]
. (20)

As before, for free massive fermions, one can find that Eq. (20) approaches

S = Nk

[
vd
λd

(
d

2
+ 1

)
f d

2
+1(z)− ln z

]
. (21)

Again, at d = 3, Eq. (21) reduces to the same expression for entropy as in
Refs. [11, 12].
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3.4. Helmholtz Free Energy

From the Grand Canonical Ensemble, we get the expression of Helmholtz
Free Energy for the Fermi system

A = −kTq +NkT ln z = −NkT fχ+1(z)

fχ(z)
+NkT ln z . (22)

For free massive fermions, the above expression reduces as below

A

NkT
= −

f d
2
+1(z)

f d
2
(z)

+ ln z . (23)

Now, for d = 3, the above equation produces the exact expression for
Helmholtz Free Energy [11, 12].

3.5. Pressure

Re-writing equation (15) stating the number of particles, we get

N −N0

Vd
∏d
i=1

(
kT
ci

)1/ni
Γ
(

1
ni

+ 1
) =

N −N0

V ′d
=

g

λ′d
gχ(z) .

Now, we take a very well-known expression for the nonrelativistic d-dimen-
sional ideal free Fermi gas [11]

N −N0

Vd
=

g

λd0
fd/2(z) .

Comparing the above equations, we can say that V ′d is a more generalized
extension of Vd, where

V ′d = Vd

d∏
i=1

(
kT

ci

)1/ni

Γ

(
1

ni
+ 1

)
.

It represents the effect of external potential on the performance of trapped
fermions. Calling V ′d the effective volume, the grand potential can be re-
written as

q = q0 + g
gV ′d
λ′d

fχ+1(z) . (24)

So, the effective pressure

P ′ =
1

β

(
∂q

∂V ′d

)
=
gkT

λ′d
fχ+1(z) , (25)
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which can be re-written as

P ′ =
NkT

V ′d

fχ+1(z)

fχ(z)
. (26)

The above equation is a very general equation of state for any dimension-
ality d, any dispersion relation of the form of (∝ ps) having any form of
generic power law trap, and, obviously it is expected that it will reproduce
the special case of a free system. For the free system, equation (26) becomes

P =
1

β

(
∂q

∂Vd

)
=
NkT

Vd

fd/2+1(z)

f d
2
(z)

(27)

which is in accordance with Refs. [11, 12] at d = 3.
Now, comparing Eqs. (18) and (26), we get

P ′V ′d =
E

χ
. (28)

For d-dimensional free Fermi gas from the previous equation, one can obtain

PVd =
2

d
E . (29)

This is an important and familiar relation, PV = 2
3E when d=3 [10–13]. This

actually shows that equation (28) is a very significant relation for the Fermi
gas irrespective of whether they are trapped or free. In the case of trapped
fermions, the effective volume and effective pressure play the same role as
volume and pressure in current textbooks and literature. Interestingly, the
Bose gas also maintains this equation [1].

3.6. Heat capacity

Heat capacity at constant volume CV can be written as

CV = T

(
∂S

∂T

)
N,V

= Nk

[
χ(χ+ 1)

ν ′

λ′D
fχ+1(z)− χ2 fχ(z)

fχ−1(z)

]
. (30)

For free massive fermions, the expression becomes

CV = Nk

[
d

2

(
d

2
+ 1

)
ν

λD
f d

2
+1(z)−

d

2

2 f d
2
(z)

f d
2
−1(z)

]
. (31)
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In the high temperature, the limit of CV approaches its classical value as it
becomes χNk for the trapped system and d

2Nk for the free system, which
is 3

2Nk, when d = 3.
Now, heat capacity at constant pressure CP is

CP = T

(
∂S

∂T

)
N,P

= Nk

[
(χ+1)2f2χ+1(z)fχ−1(z)

(
ν ′

λ′D

)3

− χ(χ+1)fχ+1(z)
ν ′

λ′D

]
. (32)

In the case of free massive Fermi gas, the above equation reduces to

CP =Nk

[(
d

2
+1

)2

f2d
2
+1

(z)f d
2
−1(z)

(
ν ′

λ′D

)3

− d

2

(
d

2
+1

)
f d

2
+1(z)

ν ′

λ′D

]
. (33)

It coincides exactly with Refs. [11, 13] for d = 3. Again, in the high tempera-
ture, the limit CP becomes (χ+1)Nk for the trapped system and (d2 +1)Nk

for the free system, which is 5
2Nk, when d = 3. So, in the high temperature,

the limit CP approaches its classical value.
Now, the ratio, γ = (CPCV ) for Fermi gas is given by

γ =
(χ+ 1)2

f2χ+1(z)fχ−1(z)

f3χ(z)
− χ(χ+ 1)

fχ+1(z)
fχ(z)

χ(χ+ 1) ν′

λ′D
fχ+1(z)− χ2 fχ(z)

fχ−1(z)

. (34)

Now, in high temperature limit, the above equation becomes

γ =
(χ+ 1)2 − χ(χ+ 1)

χ(χ+ 1)− χ2
= 1 +

1

χ
. (35)

In the free system, choosing all ni −→∞, we get from the above equation

γ = 1 +
l

d
. (36)

With d = 3 and l = 2, γ equals 5
3 , thus obtaining the classical value at high

temperature limit.

3.7. Isothermal compressibility

The isothermal compressibility of the Fermi gas can be obtained

κT = −V ′d
(
∂V ′

∂P ′

)
N,T

= −V ′d
(
∂P ′

∂z

)
N,T

(
∂z

∂V ′

)
N,T

=
V ′d
NkT

fχ−1(z)

fχ(z)
, (37)

which reproduces the same result for isothermal compressibility of the free
massive Fermi gas at d = 3 [11]. As T −→ ∞, κT takes the classical value
for the free system, which is 1

P .
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4. The thermodynamic properties of a degenerate Fermi gas
under generic power law potential

At low temperature, we can approximate the Fermi function and write
it as quickly convergent Sommerfeld series [11]

fp(z) =
(ln z)p

Γ (p+ 1)

×
[
1 + p(p− 1)

π2

6

1

(ln z)2
+ p(p− 1)(p− 2)(p− 3)

7π4

360

1

(ln z)4
+ . . .

]
. (38)

At T = 0K, we can take only the first term of Eq. (38). Substituting this
into Eq. (15), we get

N −N0 = Ne =
gCnΓ

(
d
l + 1

)
Vd
∏d
i=1 Γ

(
1
ni

+ 1
)

hdbd/l
∏d
i=1 c

1/ni
i Γ (χ+ 1)

EχF , (39)

from which one can obtain

EF =

 hdbd/l
∏d
i=1 c

1/ni
i Γ (χ+ 1)Ne

gCnΓ
(
d
l + 1

)
Vd
∏d
i=1 Γ

(
1
ni

+ 1
)
 1
χ

. (40)

Following the method of Refs. [4, 11, 12], we approximate the chemical
potential and fugacity from Eq. (15)

µ = kT ln z = EF

[
1− (χ− 1)

π2

6

(
kT

EF

)2
]
. (41)

Using this approximation, we can calculate the thermodynamic quantities
of the previous section

E

N
=

χ

χ+ 1
EF

[
1 + (χ+ 1)

π2

6

(
kT

EF

)2
]
, (42)

S

Nk
=

χπ2

3EF
kT , (43)

P =
EFN

(χ+ 1)V ′

[
1 + (χ+ 1)

π2

6

(
kT

EF

)2
]
, (44)

CV
Nk

=
χπ2

3EF
kT , (45)

κT =
V ′χ

NEF

{
1 + (1− χ)

π2

6

(
kT

EF

)2
}
. (46)
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In order to determine the pure quantum effect in the degeneracy limit, we
need to subtract the classical effect from the above equations. Thus, for any
quantity I, the quantum effect in the degeneracy limit is ∆I = I − Icl. In
the case of free massive fermions (choosing l = 2), Eqs. (42)–(46) become

E

N
=

d

d+ 2
EF

[
1 +

(
d

2
+ 1

)
π2

6

(
kT

EF

)2
]
, (47)

S

Nk
=

dπ2

6EF
kT , (48)

P =
2EFN

(d+ 2)V ′

[
1 +

(
d

2
+ 1

)
π2

6

(
kT

EF

)2
]
, (49)

CV
Nk

=
dπ2

6EF
kT , (50)

κT =
V ′d

2NEF

{
1 +

(
1− d

2

)
π2

6

(
kT

EF

)2
}
. (51)

At temperature T = 0K, entropy S = 0 which is in accordance with the
third law of thermodynamics. CV is also zero at T = 0K and the internal
energy, pressure and isothermal compressibility T = 0K,

E0 =
χ

χ+ 1
NEF , (52)

P0 =
1

(χ+ 1)

N

V ′
EF , (53)

κT 0 =
V χ

NEF
. (54)

In the case of the free massive Fermi gas, the above equations reduce to

E0 =
d

d+ 2
NEF , (55)

P0 =
2

(d+ 2)

N

V
EF , (56)

κT 0 =
V

NEF

d

2
. (57)

At d = 3, Eqs. (55) and (56) become exactly the same as in Ref. [11].
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5. Discussion

Thermodynamics of the ideal Fermi gas in the presence of an external
generic power law potential is discussed in this section. It is seen that the
effective volume V ′d is a very salient feature of the trapped system. It plays
the same role in trapped system as the volume in free system. This enables
us to treat the trapped Fermi gas and the Bose gas [1] as a free one. The
difference between V ′d and Vd is that the former depends on temperature
and power law exponent, while the latter does not. But as all ni −→ ∞,
V ′d approaches Vd. In this process, the more general thermal wavelength λ′
is defined with an arbitrary kinematic parameter in any dimension. It was
shown how λ′ can reproduce the thermal wavelengths for different dimensions
cited in the literature. In the case of the trapped Fermi gases, V ′d and λ′

enable all the thermodynamic functions of the system to be expressed in a
compact form similar to those of the free Fermi gas.

At first, the density of states and grand potential are calculated in Sec-
tion 2. All the thermodynamic quantities are derived from the grand po-
tential in Section 3. It is seen that all the thermodynamic quantities for
the trapped Fermi gas can be expressed in terms of the Fermi function, just
as in the case of free Fermi gas. In the former case, the Fermi functions
depend on χ = d

l +
∑d

i=1
1
ni

and z, while in the latter case Fermi functions
depend on d

l and z. As ni −→∞, the mathematical form of thermodynamic
quantities of trapped system reduces to that of free system. Nevertheless, it
is noteworthy that Eq. (28) is a very remarkable relation for quantum gases
as both Bose [1] and Fermi systems maintain it.

In general, the thermodynamic quantities of trapped system differ from
free system. We can specifically check this by comparing the free system
with the harmonically trapped potential. Let, d = 3, a = 1

2m , l = 2,
n1 = n2=n3=2, ci = mω2

2 and g = 2. Results of some of the physical
quantities have been listed in Table I. From the table, it is seen that ther-
modynamic quantities are affected by the trapping potential. The signature
of trapping potential is present in the low as well as in the high temper-
ature limit of thermodynamic functions. As we know, chemical potential
approaches Fermi energy as T −→ 0 in the case of the free Fermi gas, the
same phenomena is also observed in the trapped Fermi gas, although Fermi
energy does vary when comparing the trapped system with the free one. Let
us turn our attention to the low temperature limit of the Fermi gas. It is
seen that both CV and S has same numerical value in this limit just like
the free system and go to zero at T = 0K. The latter actually is a manifes-
tation of the third law of thermodynamics. But most significantly internal
energy and pressure of the trapped Fermi gas do not go to zero as T = 0K
like it happens for free Fermi gas. According to equation (46), no matter
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TABLE I

Dissimilarity between the free and harmonic-potential-trapped nonrelativistic
Fermi gases in d = 3.

Physical quantity Free gas Trapped gas

Fermi energy }2

2m

(
6π2

(
N
V

) 2
3

)
}ω(3N)1/3

Fermi temperature }2

2mk

(
6π2

(
N
V

) 2
3

)
}ω
k (3N)1/3

Internal energy 3
2NkT

f 5
2
(z)

f 3
2
(z) 3NkT f4(z)

f3(z)

Internal energy 3
5NEF

(
1 + 5

2
π2

6

(
kT
EF

)2)
3
4NEF

(
1 + 2π2

3

(
kT
EF

)2)
at lower temperature
Ground state energy 3

5NEF
3
4NEF

Ground state pressure 2
5
N
V EF

1
4
N
V ′EF

Particle number 4πV
3h3 (2mEF)3/2 1

3

(
EF

}ω
)3

at ground state
Internal energy 3

2NkT 3NkT
at higher temperature

Isothermal compressibility V
NkT

f1/2(z)

f3/2(z)
V ′

NkT
f2(z)
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what power law exponent one chooses, the ground state pressure never goes
to zero. It suggests that the ground state energy and ground state pressure
seen here are clearly a quantum effect arising due to the Pauli exclusion prin-
ciple. Therefore, fermions spread over a lowest available energy state. More
interestingly, isothermal compressibility of the Fermi system is nonzero at
T = 0K, which indicates that the zero point pressure is not merely a constant
but depends on volume.

6. Conclusion

From the grand potential, the thermodynamic properties of the Fermi
gas trapped under generic power law potential have been evaluated. The
calculated physical quantities reduce to expressions available in the litera-
ture, with appropriate choice of power law exponents and dimensionality.
The thermodynamic quantities are further studied closely in the degeneracy
limit. It is found that pressure, energy and isothermal compressibility are
nonzero, with any trapping potential, indicating the governing power of the
Pauli exclusion principle. In this manuscript, the discussion was restricted
to the case of the ideal system under trapping potential. It will be very
interesting to explore the effect of interaction in the degeneracy limit.

M.M.F. would like to thank Fatema Farjana for her efforts to help to
present this work and Cristina-Mihaela Lupascu, Arya Chowdhury and
Mishkat Al Alvi for showing the typographic mistakes.

REFERENCES

[1] M.M. Faruk, arXiv:1502.07054 [cond-mat.quant-gas].
[2] L. Salasnich, J. Math. Phys. 41, 8016 (2000).
[3] A. Jellal, M. Doud, Mod. Phys. Lett. B 17, 1321 (2003).
[4] Mingzhe Li et al., Phys. Rev. A 58, 1445 (1998).
[5] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71,

463 (1999).
[6] L. Salasnich, A. Parola, L. Reatto, Phys. Rev. A 59, 2990 (1999).
[7] C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75,

1687 (1995).
[8] M.H. Anderson et al., Science 269, 198 (1995).
[9] K.B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995).
[10] R.M. Ziff, G.E. Uhlenbeck, M. Kac, Phys. Rep. 32, 169 (1977).
[11] R.K. Pathria, Statistical Mechanics, Elsevier, 2004.

http://dx.doi.org/10.1063/1.1322078
http://dx.doi.org/10.1142/S021798490300630X
http://dx.doi.org/10.1103/PhysRevA.58.1445
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/PhysRevA.59.2990
http://dx.doi.org/10.1103/PhysRevLett.75.1687
http://dx.doi.org/10.1103/PhysRevLett.75.1687
http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1103/PhysRevLett.75.3969
http://dx.doi.org/10.1016/0370-1573(77)90052-7


Thermodynamics of Ideal Fermi Gas Under Generic Power Law Potential . . . 2433

[12] K. Huang, Statistical Mechanics, Wiley Eastern Limited, 1991.
[13] C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases,

Second Edition, Cambridge University Press, 2008.
[14] A. Bhowal, M. Acharyya, Acta Phys. Pol. B 43, 9 (2012).
[15] M. Acharyya, Commun. Theor. Phys. 55, 901 (2011).
[16] M. Acharyya, Commun. Theor. Phys. 56, 943 (2011).
[17] M. Collura, G. Martelloni, J. Stat. Mech. 2014, P08006 (2014).
[18] M.H. Lee, Phys. Rev. E 55, 1518 (1997).
[19] R.K. Pathria, Phys. Rev. E 57, 2697 (1998).
[20] M. Apostol, Phys. Rev. E 56, 4854 (1997).
[21] B. DeMarco, D.S. Jin, Science 285, 1703 (1999).
[22] M.H. Lee, Acta Phys. Pol. B 40, 1279 (2009).
[23] Shukuan Cai, Guozhen Su, Jincan Chen, J. Phys. A: Math. Theor. 40,

11245 (2007).
[24] P. Narayana Swamy, Eur. Phys. J. B 50, 291 (2006).
[25] T.T. Chou, C.N. Yang, L.H. Yu, Phys. Rev. A 53, 4257 (1996).
[26] H.E. Haber, H.A. Weldon, Phys. Rev. Lett. 46, 1497 (1981).
[27] R. Beckmann, F. Karch, Phys. Rev. Lett. 43, 1277 (1979).
[28] R. Beckmann, F. Karch, D.E. Miller, Phys. Rev. A 25, 561 (1982).

http://dx.doi.org/10.5506/APhysPolB.43.9
http://dx.doi.org/10.1088/0253-6102/55/5/30
http://dx.doi.org/10.1088/0253-6102/56/5/24
http://dx.doi.org/10.1088/1742-5468/2014/08/P08006
http://dx.doi.org/10.1103/PhysRevE.55.1518
http://dx.doi.org/10.1103/PhysRevE.57.2697
http://dx.doi.org/10.1103/PhysRevE.56.4854
http://dx.doi.org/10.1126/science.285.5434.1703
http://www.actaphys.uj.edu.pl/vol40/abs/v40p1279
http://dx.doi.org/10.1088/1751-8113/40/37/003
http://dx.doi.org/10.1088/1751-8113/40/37/003
http://dx.doi.org/10.1140/epjb/e2006-00055-7
http://dx.doi.org/10.1103/PhysRevA.53.4257
http://dx.doi.org/10.1103/PhysRevLett.46.1497
http://dx.doi.org/10.1103/PhysRevLett.43.1277
http://dx.doi.org/10.1103/PhysRevA.25.561

	1 Introduction
	2 Density of states and grand potential of Fermi gas under generic power law potential in d-dimensions
	3 Thermodynamics of the Fermi gas under generic power law potential in d-dimensions
	3.1 Number of particles
	3.2 Internal energy
	3.3 Entropy
	3.4 Helmholtz Free Energy
	3.5 Pressure
	3.6 Heat capacity
	3.7 Isothermal compressibility

	4 The thermodynamic properties of a degenerate Fermi gas under generic power law potential
	5 Discussion
	6 Conclusion

