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GENERAL-RELATIVISTIC ROTATION LAWS
IN ROTATING FLUID BODIES:

CONSTANT LINEAR VELOCITY
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New rotation laws have been recently found for general-relativistic self-
gravitating stationary fluids. It was not clear whether they apply to systems
rotating with a constant linear velocity. In this paper, we fill this gap.
The answer is positive. That means, in particular, that these systems
should exhibit the recently discovered general-relativistic weak-field effects
within rotating tori: the dynamic anti-dragging and the deviation from the
Keplerian motion induced by the fluid selfgravity.
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1. Introduction

Axially symmetric and stationary Newtonian hydrodynamic configura-
tions are known for a long time to be characterized by a rich variety of
rotation curves. The angular momentum per unit mass j can be any func-
tion of r, where r is the distance from a (fixed) rotation axis. In contrast to
that, in general relativity only two families of rotation laws had been known
— one with j being a linear function of the angular velocity Ω [1–3] and a
more recent nonlinear angular velocity proposal [4]. Their Newtonian limits
recover only a small fraction of the set of Newtonian rotation curves.

Quite recently, two of us have found general-relativistic rotation curves
j = j(Ω) [5] that in the nonrelativistic limit exactly coincide with all mono-
mial rotation laws Ω0 = w/r2/(1−δ), with the exception of the constant linear
velocity case (−∞ ≤ δ ≤ 0, δ 6= −1, w = const). We obtained, in particular,
the general-relativistic Keplerian rotation law that possesses the first post-
Newtonian limit (1PN) and exactly encompasses the solution corresponding
to the massless disk of dust in the Schwarzschild spacetime.
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The rotation law proposed in [5] reads

j(Ω) ≡ w1−δΩδ

1− 1−3δ
(1+δ)c2

w1−δΩ1+δ + 4c0
c2

. (1)

The main purpose of this paper is to show that the problematic case of
constant linear velocity is also included in the proposed family of general-
relativistic rotations.

2. Hydrodynamical equations

In this paper, we apply the formulation of general-relativistic hydrody-
namics elaborated by Komatsu et al. in [3]. Einstein equations read

Rµν − gµν
R

2
= 8π

G

c4
Tµν , (2)

where Tµν is the stress-energy tensor. We shall assume axial symmetry,
stationary rotation and the angular velocity vector field ~v = Ω∂φ. Then,
the metric can be written as

ds2 = −e
2ν
c2
(
dx0
)2

+ r2e
2β

c2

(
dφ− ω

c3
(r, z) dx0

)2
+ e

2α
c2
(
dr2 + dz2

)
,

where r, z, φ are the cylindrical coordinates. The stress-energy tensor of a
relativistic perfect fluid reads

Tαβ = ρ
(
c2 + h

)
uαuβ + pgαβ .

Here ρ is the baryonic rest-mass density, h is the specific entalpy and p is the
pressure. The 4-velocity uα is normalized, gαβuαuβ = −1 and uφ/ut = Ω.

We assume that the equation of state obeys a polytropic relation

p(ρ, S) = K(S)ργ ,

where S is the specific entropy of the fluid and γ is known as the adiabatic
index. Hence, h(ρ, S) = K(S) γ

γ−1ρ
γ−1. The entropy is constant.

Following [3], we introduce

V 2 = r2
(
Ω − ω

c2

)2
e2(β−ν)/c

2
,

where V is the proper velocity with respect to the zero angular momentum
observer.
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Einstein equations implied by the above metric take the form of an
overdetermined, but consistent set of equations imposed on the potentials
α, β, ν, and ω. These equations have been found by Komatsu et al. in [3].

If we assume that the angular momentum per unit mass,

j = uφu
t =

V 2(
Ω − ω

c2

) (
1− V 2

c2

) , (3)

depends only on the angular velocity Ω [j ≡ j(Ω)], then the Euler equa-
tions become solvable and they reduce to a single general-relativistic integro-
algebraic Bernoulli equation

ln

(
1 +

h

c2

)
+
ν

c2
+

1

2
ln

(
1− V 2

c2

)
+

1

c2

∫
dΩj(Ω) = C , (4)

where C is an integration constant. The above equation carries all informa-
tion that is present within the conservation equations ∇µTµν = 0 and the
baryonic mass conservation ∇µ (ρuµ) = 0.

3. Rotation law

The general-relativistic rotation law employed in [5] equates the angular
momentum per unit mass, given by (3), to a specific function j(Ω):

j(Ω) ≡ w1−δΩδ

1− 1−3δ
(1+δ)c2

w1−δΩ1+δ + 4c0
c2

. (5)

In explicit terms, one has

w1−δΩδ

1− 1−3δ
(1+δ)c2

w1−δΩ1+δ + 4c0
c2

=
V 2(

Ω − ω
c2

) (
1− V 2

c2

) . (6)

From this equation, one can recover rotation curves Ω(r, z).
With the rotation law (5), the general-relativistic Bernoulli equation (4)

acquires a simple algebraic form, assuming δ 6= −1:(
1 +

h

c2

)
eν/c

2

√
1− V 2

c2
×
(

1− 1− 3δ

c2(1 + δ)
w1−δΩ1+δ +

4c0
c2

) −1
(1−3δ)

= C .

(7)
Assume that there exists the Newtonian limit (the zeroth order of the

post-Newtonian expansion — 0PN) of the rotation law. This yields, in the
0PN order,

Ω0 =
w

r
2

1−δ
. (8)
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Thus, w and δ can be obtained from the Newtonian limit. Moreover, the
constant w is any real number, while δ is nonpositive — due to the stability
requirement [6] — and satisfies the bounds −∞ ≤ δ ≤ 0 and δ 6= −1. These
two constants can be given a priori within the given range of values. Let us
point out that the general-relativistic extension of this stability condition,
formulated in [7], is satisfied in our case for δ < 0.

The two limiting cases δ = 0 and δ = −∞ correspond to the constant an-
gular momentum per unit mass (Ω0 = w/r2) and the rigid rotation (Ω = w),
respectively. The Keplerian rotation is related to the choice of δ = −1/3
and w2 = GM , where M is a mass.

The particular form of the expression (1−3δ)/(1+δ) in the denominator
of (5) follows from the condition that an infinitely rotating thin disk made of
weightless dust in a Schwarzschild space-time satisfies exactly the Bernoulli
equation and the Keplerian rotation law [5].

It was proven in [5] that if c0 is the Newtonian hydrodynamic energy per
unit mass, then the exact solution satisfies the first post-Newtonian (1PN)
equations. We shall outline here the calculation.

The 1PN approximation corresponds to the choice of metric exponents
α = β = −ν = −U , with |U | � c2 [8]. Define ω ≡ r−2Aφ. The spatial part
of the metric

ds2 = −
(

1 +
2U

c2
+

2U2

c4

)(
dx0
)2 − 2c−3Aφdx

0dφ

+

(
1− 2U

c2

)(
dr2 + dz2 + r2dφ2

)
(9)

is conformally flat.
We split different quantities (ρ, p, h, U , and vi) into their Newtonian

(denoted by subscript ‘0’) and 1PN (denoted by subscript ‘1’) parts. Exempli
gratia, for ρ, Ω, Ψ , and U , this splitting reads

ρ = ρ0 + c−2ρ1 , (10a)

Ω = Ω0 + c−2vφ1 , (10b)

U = U0 + c−2U1 . (10c)

Notice that, up to the 1PN order,

1

ρ
∂ip = ∂ih0 + c−2∂ih1+O

(
c−4
)
, (11)

where the 1PN correction h1 to the specific enthalpy can be written as h1 =
dh0
dρ0

ρ1. For the polytropic equation of state, this gives h1 = (γ − 1)h0ρ1/ρ0.
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Making use of the introduced above splitting of quantities into Newtonian
0PN and 1PN parts, one can extract from Eq. (7) the 0PN- and 1PN-level
Bernoulli equations.

At the Newtonian level, the gravitational potential is given by the Pois-
son equation

∆U0 = 4πGρ0 , (12)

while the Bernoulli equation reads

h0 + U0 −
δ − 1

2(1 + δ)
Ω2

0r
2 = c0 , (13)

where c0 is a constant that can be interpreted as the energy per unit mass.
Here ∆ is the flat Laplacian with respect to the cylindrical coordinates r, z,
and φ.

One can obtain the first correction vφ1 to the angular velocity Ω by ex-
panding the rotation law (6) in powers of c up to terms (c−2)

vφ1 = − 2

1− δ
Ω3

0r
2 +

Aφ
r2(1− δ)

− 4Ω0h0
1− δ

. (14)

Using the fact that in the Newtonian gauge imposed on the line element (9)
the distance to the rotation axis r̃ = r

(
1− U0/c

2
)

+ O(c−4), we can write
down the full expression for the angular velocity, up to terms O(c−4) [5]

Ω = Ω0 +
vφ1
c2

=
w

r̃2/(1−δ)
− 2

c2(1− δ)
Ω0

(
U0 +Ω2

0 r̃
2
)

+
Aφ

r̃2c2(1− δ)
− 4

c2(1− δ)
Ω0h0 . (15)

4. Constant linear velocity

In order to construct the limit δ → −1, we need to inspect the denom-
inator of (5). One can easily check, using (13), that in this limit, both c0
and 1−3δ

c2(1+δ)
w1−δΩ1+δ become singular. After addition and subtraction of a

term 2(δ−1)
c2(1+δ)

w1−δ in the denominator of (5), we obtain

j(Ω) ≡ w1−δΩδ

1− 1−3δ
(1+δ)c2

w1−δΩ1+δ − 2(δ−1)
c2(1+δ)

w1−δ + 4ĉ0
c2

=
w1−δΩδ

1 + 1
c2
w1−δΩ1+δ − 2(1−δ)

c2
w1−δ

(
Ω1+δ−1

1+δ

)
+ 4ĉ0

c2

, (16)
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where ĉ0 is the regularised energy per unit mass

ĉ0 = h0 + U0 −
δ − 1

2(1 + δ)
Ω1+δw1−δ +

δ − 1

2(1 + δ)
w1−δ

= h0 + U0 −
δ − 1

2
w1−δ

(
Ω1+δ − 1

1 + δ

)
. (17)

It is worth noting that ĉ0 and j(Ω) are not singular in δ = −1. To prove
this fact, one needs only to use the identity

lim
α→0

xα − 1

α
= lnx .

Indeed, taking the limit δ → −1 in equations (16) and (17) results in

j(Ω) =
w2Ω−1

1 + 1
c2
w2 − 4

c2
w2 lnΩ + 4ĉ0

c2

,

while the regularised Bernoulli equation reads now

ĉ0 = h0 + U0 + w2 lnΩ . (18)

As in the case δ 6= −1, the leading correction vφ1 to the angular ve-
locity Ω0 is obtained from the perturbation expansion of the rotation law

w2Ω−1

1 + w2

c2
− 4w2 lnΩ

c2
+ 4ĉ0

c2

=
V 2(

Ω − ω
c2

) (
1− V 2

c2

) , (19)

up to terms of the order of c−2. One arrives at

vφ1 = −Ω3
0r

2 +
Aφ
2r2
− 2Ω0h0 , (20)

where we applied Eqs. (8) and (18). Note that the form of the correction is
not affected by the transition to the limit and agrees with (14).

After these consideration, we are able to interpret the meaning of various
contributions to the angular velocity Ω given by formula (15). The first term
is simply the Newtonian rotation law rewritten as a function of the geomet-
ric distance, as given at the 1PN level of approximation, from the rotation
axis. The second term in (15) is sensitive both to the contribution of the
disk self-gravity at the plane z = 0 and the deviation from the strictly Kep-
lerian motion. It vanishes for test fluids. The third term is responsible for the
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geometric frame dragging. The last term represents the recently discovered
dynamic anti-dragging effect; it agrees (for the monomial angular velocities
Ω0 = r−2/(1−δ)w) — with the result obtained earlier in [9].

We shall consider the remaining first order perturbations terms. The
vectorial component Aφ satisfies the following equation

∆Aφ − 2
∂rAφ
r

= −16πGr2ρ0Ω0 . (21)

The 1PN Bernoulli equation has the form

c1 = −h1 − U1 −Ω0Aφ + 2r2(Ω0)
2h0 −

3

2
h20

−4h0U0 − 2U2
0 −

δ + 3

4 (1 + δ)
r4Ω4

0

= −h1 − U1 −Ω0Aφ + 2r2(Ω0)
2h0 −

3

2
h20

−4h0U0 − 2U2
0 −

(δ + 3)w4

4 (1 + δ)
, (22)

where c1 is a constant. The 1PN potential correction U1 can be obtained
from

∆U1 = 4πG
(
ρ1 + 2p0 + ρ0

(
h0 − 2U0 + 2r2 (Ω0)

2
))

. (23)

It is clear that only the correction to the proper energy per unit mass c1
would cause trouble in the limit δ → −1 but, on the other hand it does not
influence the 1PN correction to the angular velocity. One would have to
regularise c1 in the next orders of the perturbation calculation.

5. Summary

We found in [5] that the consistency of the formalism and the uniqueness
of those solutions that possess the 1PN, lead to well defined numerical values
of the coefficients in the rotation law (1). It is interesting that the definition
(1) is rigid — there is not any parametric freedom left for those solutions
that have the 1PN. We proved in this paper that the case of constant linear
velocity that corresponds to the seemingly singular point δ = −1 can be
deduced from (1). That extends the validity of the general relativistic laws
constructed in [5].

P.M. acknowledges the support of the Polish Ministry of Science and
Higher Education grant IP2012 000172 (Iuventus Plus).
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