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In this article, we assume that the nonet scalar mesons above 1 GeV
are q̄q states and study the temperature dependence of the masses and
decay constants of the a0(1450) and K∗

0 (1430) using the thermal QCD
sum rules. We fit the numerical values into analytical functions, which
have applications in phenomenological analysis of the thermal QCD and in
interpreting the heavy-ion collision experiments.
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1. Introduction

The fundamental properties of QCD such as (de)confinement and restora-
tion (or breaking) of the chiral symmetry can be explored in the heavy-ion
collisions. A quantitative understanding of these two phenomena is still
lacking and hence poses a challenge for the future research. Heavy-ion col-
lisions at FAIR energies permit the exploration of the QCD phase diagram
in the region of high baryon densities, which is complementary to the in-
vestigations performed at the RHIC and LHC [1, 2]. In recent years, there
has been an increasing interest in the modification of hadronic properties at
finite temperature in order to interpret the heavy-ion collision experiments,
and therefore in understanding of the restoration of the chiral symmetry.
The QCD sum rules is one of the most attractive and applicable tools in
this respect [3, 4].
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Bochkarev and Shaposhnikov extend the QCD sum rules to study the
ρ meson at finite temperature by assuming that both the operator product
expansion and quark–hadron duality remain valid at finite temperature, but
the vacuum condensates are replaced by their thermal expectation values [5].
The thermal QCD sum rules have several new features in exploring the
deconfinement and restoration of the chiral symmetry, and have been applied
to study the thermal properties of the light mesons, heavy mesons and heavy
quarkonia [6, 7], and nucleons [8].

A key parameter signaling the deconfinement is the continuum threshold
s0(T ) [5] above which the hadronic spectral density is well described by per-
turbative QCD. At the critical temperature Tc for deconfinement, we expect
that the hadrons disappear from the spectral functions and the quark con-
densates vanish. There exists a link between the deconfinement and chiral-
symmetry restoration based on the QCD sum rules, s0(T )/s0 = 〈q̄q〉T/〈q̄q〉
[9], which implies that the two phase transitions take place at roughly the
same temperature.

The underlying structures of the scalar mesons are not well established
theoretically, there are many candidates with JPC = 0++ below 2 GeV,
which cannot be accommodated in one q̄q nonet. A prospective picture sug-
gests that the scalar mesons {f0(1370), a0(1450), K∗0 (1430), f0(1500)} above
1 GeV can be assigned to be a conventional q̄q nonet with some possible glue
components, while the scalar mesons {f0(600), a0(980), κ(800), f0(980)} be-
low 1 GeV form an exotic [qq]3̄[q̄q̄]3 nonet with substantial mixings with the
qq̄ states, meson–meson states and glueballs [10].

In this article, we assume that the nonet scalar mesons above 1 GeV are
the q̄q states and we study their properties at finite temperature with the
thermal QCD sum rules, and expect to obtain some new information about
the nature of the scalar mesons from the thermal QCD analysis.

The article is arranged as follows: we derive the thermal QCD sum
rules for the a0(1450) and K∗0 (1430) in Sect. 2; in Sect. 3, we present the
numerical results and discussions; Sect. 4 is reserved for our conclusions.

2. The thermal QCD sum rules for the a0(1450) and K∗
0(1430)

In the following, we write down the two-point correlation functions Π(p)
in the thermal QCD sum rules,

Π(p) = i

∫
d4xeip·x〈T {J(x)J(0)}〉T , (1)

where J(x) = Ja0(1450)(x), JK∗0 (1430)(x), Jf0(1370)(x), Jf0(1500)(x),
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Ja0(1450)(x) =
ū(x)u(x)− d̄(x)d(x)√

2
, ū(x)d(x) , d̄(x)u(x) ,

JK∗0 (1430)(x) = q̄(x)s(x) , s̄(x)q(x) ,

Jf0(1370)(x) =
ū(x)u(x) + d̄(x)d(x)√

2
,

Jf0(1500)(x) = s̄(x)s(x) (2)

and q = u, d, the subscript index T denotes the thermal average of the cor-
relation functions. The currents Ja0(1450)(x) interpolate the isospin triplet

mesons a0(1450), the ū(x)u(x)−d̄(x)d(x)√
2

, ū(x)d(x) and d̄(x)u(x) lead to the
same QCD spectral density in the isospin limit. The currents JK∗0 (1430)(x)

interpolate the isospin doublet mesons K∗0 (1430), the q̄(x)s(x) and s̄(x)q(x)
also lead to the same QCD spectral density in the isospin limit. In this arti-
cle, we take the values mu = md and 〈ūu〉 = 〈d̄d〉. The currents Jf0(1370)(x)
and Jf0(1500)(x) have zero isospin, and interpolate the f0(1370) and f0(1500),
respectively. The f0(1370) and f0(1500) may have large glueball components
[10], we neglect the currents Jf0(1370)(x) and Jf0(1500)(x) in this article. The
thermal average of any operator O is defined as

〈O〉T =
Tr [exp (−βH)O]

Tr [exp (−βH)]
, (3)

the H is the QCD Hamiltonian, β = 1
T , and the traces are carried out over

the complete set of states.
We can insert a complete set of intermediate hadronic states with the

same quantum numbers as the current operators J(0) into the correlation
functions Π(p) to obtain the hadronic representation [3, 4]. After isolating
the ground state scalar mesons and the pseudoscalar meson pairs, we get
the following result

Π(p0, ~p ) = if2
Sm

2
S

[
i

p2 −m2
S + iε

+ 2πnB(p0)δ
(
p2 −m2

S

)]
−iλ2

SP1P2
g2
SP1P2

∫
d4k

(2π)4

[
1 + nB(ω1)

k2 −m2
1 + iε

− nB(ω1)

k2 −m2
1 − iε

]
×
[

1 + nB(ω2)

(k − p)2 −m2
2 + iε

− nB(ω2)

(k − p)2 −m2
2 − iε

]
+ . . . ,

(4)

where ω1 =

√
~k2 +m2

1 and ω2 =

√
(~k − ~p )2 +m2

2, the nB(ω) = [exp(βω)

−1]−1 is the Bose distribution function, the coupling constants fS , λSP1P2 ,
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gSP1P2 are defined by

〈0|J(0)|S(p)〉 = fSmS ,

〈0|J(0)|P1P2(p)〉 = λSP1P2 gSP1P2 . (5)

In the soft limit p → 0, λSP1P2 = fS
mS

. The revelent hadronic coupling
constants in this article are:

ga00π0η =

√
2

3
g , ga00K+K− =

1√
2
g , ga00K0K̄0 = − 1√

2
g ,

gK∗00 K−π+ = g , gK∗00 K̄0π0 = − 1√
2
g , gK∗00 K̄0η = − 1√

6
g , (6)

where g can be obtained from the experimental data [11].
Now, we obtain the phenomenological retarded correlation functions

ΠR
H(p0) through dispersion relation,

ΠR
H(p0) =

s0(T )∫
0

dω2 1

ω2 −
(
p2

0 + iε
) ImΠ(ω, 0)

π
tanh

ω

2T

=
f2
Sm

2
S

ω2 − p2
0

+
λ2
SP1P2

g2
SP1P2

16π2

×
s0(T )∫

(m1+m2)2(T )

dω2 1

ω2 − p2
0

v
[
1 + 2nB

(ω
2

)]
(7)

and v =
√

1− (m1+m2)2

ω2 .
We carry out the operator product expansion for the correlation functions

Π(p) at finite temperature by calculating the Feynman diagrams shown in
Fig. 1, and obtain the retarded correlation functions at the quark level

ΠR
a0(1450)(p0) =

3

8π2

(
1 +

11

3

αs

π

) s0(T )∫
0

dω2 ω2

ω2 − p2
0

[
1− 2nF

(ω
2

)]

− 1

8p2
0

〈
αsGG

π

〉
T

−
(mu+2md)〈ūu〉T + (md+2mu)

〈
d̄d
〉

T

2p2
0

−48π

9

αs〈ūu〉T
〈
d̄d
〉

T

p4
0

, (8)

ΠR
K∗0 (1430)s(p0) = ΠR

a0(1450)(p0) |md→ms, 〈d̄d〉→〈s̄s〉 , (9)
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where the nF(ω) = [exp(βω)+1]−1 is the Fermi distribution function. We ob-
tain theΠR

a0(1450)(p0) andΠR
K∗0 (1430)(p0) by assuming Ja0(1450)(x) = ū(x)d(x)

and JK∗0 (1430)(x) = ū(x)s(x), respectively.

Fig. 1. Feynman diagrams that contribute to the correction functions; the diagrams
obtained by exchanging the quark lines are implied.

We take the quark–hadron duality below the continuum thresholds s0(T ),
and perform the Borel transformation with respect to the variable P 2 = −p2

0
to obtain the thermal QCD sum rules,

BM2ΠR
H,a0(1450)(p0) = BM2ΠR

a0(1450)(p0) ,

d

d (1/M2)
BM2ΠR

H,a0(1450)(p0) =
d

d (1/M2)
BM2ΠR

a0(1450)(p0) , (10)

where

BM2ΠR
H,S(p0) = f2

Sm
2
S exp

(
−
m2
S

M2

)
+
λ2
SP1P2

g2
SP1P2

16π2

×
s0(T )∫

(m1+m2)2(T )

dω2v
[
1 + 2nB

(ω
2

)]
exp

(
− ω2

M2

)
, (11)
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BM2ΠR
a0(1450)(p0) =

3

8π2

(
1 +

11

3

αs

π

) s0(T )∫
0

dω2ω2
[
1− 2nF

(ω
2

)]
× exp

(
− ω2

M2

)
+

1

8

〈
αsGG

π

〉
T

+
(mu + 2md)〈ūu〉T + (md + 2mu)

〈
d̄d
〉

T

2

−48π

9

αs〈ūu〉T
〈
d̄d
〉

T

M2
. (12)

The thermal QCD sum rules for the K∗0 (1430) can be obtained by simple
replacements.

3. Numerical results and discussions

The pion is the lowest excitation in QCD due to the dynamical breaking
of chiral symmetry and the small u and d quark masses. When the temper-
ature T is low and the thermal pion gas is dilute, the thermal average of an
operator O is given by [6]

〈O〉T = 〈0|O|0〉+
∑

i=1,2,3

∫
d3~k

(2π)3 2ωi

〈
πi(k)|O|πi(k)

〉
nB(ωi) ,

= 〈0|O|0〉 − 1

f2
π

∑
i=1,2,3

∫
d3~k

(2π)3 2ωi

〈
0|
[
Qi5,

[
Qi5,O

]]
|0
〉
nB(ωi) , (13)

where Qi5 =
∫
d3xAi0(x) is the axial-vector charge. The quark condensate

〈q̄q〉T = 〈q̄q〉
(

1− T 2

4f2
π

)
(14)

with the π meson decay constant fπ = 0.130 GeV. At the temperature of
chiral-symmetry restoration, 〈q̄q〉T = 0, then Tc = 2fπ = 260 MeV, which
is much larger than the critical temperature Tc ≈ 200 MeV from lattice
calculations [12]. The thermal QCD sum rules for the ρ meson lead to
results consistent with the critical temperature Tc = 197 MeV [13]. In this
article, we take the value Tc = 200 MeV.

Here, we use the result based on chiral perturbation theory [14], and
approximate temperature dependence of the quark condensate as

〈q̄q〉T = 〈q̄q〉

[
1− 0.4

(
T

Tc

)4

− 0.6

(
T

Tc

)8
]
. (15)
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The values of the vacuum condensates and the light quark masses are taken
as 〈ūu〉 = 〈d̄d〉 = −(0.24 ± 0.01 GeV)3, 〈s̄s〉 = 0.8〈ūu〉, 〈αsGG

π 〉 =

(0.33 GeV)4, mu = md = 6MeV, ms = 140MeV at the energy scale µ =
1GeV [3, 4]. For the thermal gluon condensate, we take the function fitted
to the data from lattice QCD [15]〈

αsGG

π

〉
T

=

〈
αsGG

π

〉[
1− 1.015

(
T

Tc

)3.078
]
. (16)

The threshold parameters are chosen as s0(T )/s0 = 〈q̄q〉T/〈q̄q〉 [9], sa0(1450)
0 =

(2.0± 0.1 GeV)2 and sK
∗
0 (1430)

0 = (1.9± 0.1 GeV)2. In the traditional QCD
sum rules, the energy gap between the ground state and the first radial
excited state is about (0.4–0.6)GeV.

From the experimental data mK∗0
= 1.425 GeV, ΓK∗0 = 0.270 GeV,

Br(K∗0 (1430)) → Kπ) = 93%, mK = 0.495GeV, mπ = 0.140GeV, we can
obtain the value g = 1.35GeV according to the partial decay width

Γ (K∗0 (1430))→ Kπ)

=
g2

16πm3
K∗0

√[
m2
K∗0
− (mK +mπ)2

] [
m2
K∗0
− (mK −mπ)2

]
. (17)

The two-point QCD sum rules lead to the decay constants fa0(1450) =
460 MeV and fK∗0 (1430) = 445 MeV at the energy scale µ = 1 GeV [16],
then we obtain the value λSP1P2 = 0.31.

Firstly, let’s set T = 0 and choose the Borel parameters as M2
a0(1450) =

(1.5–2.5) GeV2 andM2
K∗0 (1430) = (1.3–2.3) GeV2, then the pole contribution

plus two-particle contribution are about (50–75)% and the main contribu-
tions come from the perturbative terms. The two criteria (pole dominance
and convergence of the operator product expansion) of the QCD sum rules
are fully satisfied, so we expect to make reasonable predictions. We take into
account the uncertainties of the input parameters and obtain the results

ma0(1450) = 1.48± 0.09 GeV ,

mK∗0 (1430) = 1.42± 0.10 GeV ,

fa0(1450) = 0.44± 0.02 GeV ,

fK∗0 (1430) = 0.41± 0.02 GeV (18)

at T = 0. The predictions for the masses ma0(1450) and mK∗0 (1430) are con-
sistent with the experimental data [11].
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Now, we switch on the temperature T and choose the central values of
the threshold parameters s0 and the Borel parametersM2, which lead to the
experimental values of the masses at T = 0. In Eq. (11), the lower bound of
the integral (m1 +m2)2(T ) = (m1 +m2)2〈q̄q〉T/〈q̄q〉. In Fig. 2, we plot the
masses and decay constants with variations of the T . From the figure, we can
see that the masses and the decay constants decrease slowly at T < 120 MeV,
then decrease quickly with the increase of T and reach zero near the critical
temperature Tc = 200 MeV. The hadrons undertake a phase transition from
hadron states to quark–gluon plasma at sufficiently high temperature, the
scalar mesons remain as hadronic states at T < 120 MeV as the mass and
decay constant reductions are very small. At T > 120 MeV, the scalar
mesons a0(1450) and K∗0 (1430) disappear quickly.
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Fig. 2. The masses and decay constants with variations of the temperature T .

The numerical values of the masses and decay constants at finite tem-
perature can be fitted into the following simple functions:

ma0(1450)(T ) = 1.4861− 3.5104× 10−4 t exp (8.0147 t) GeV ,

mK∗0 (1430)(T ) = 1.4226− 3.9475× 10−4 t exp (7.7755 t) GeV ,

fa0(1450)(T ) = 0.43987− 5.3422× 10−4 t exp (6.6279 t) GeV ,

fK∗0 (1430)(T ) = 0.41664− 7.4755× 10−4 t exp (6.2985 t) GeV , (19)

where t = T
Tc
. We can apply those functions in phenomenological analysis

of the thermal QCD and in interpreting the heavy-ion collision experiments,
which may shed light on the nature of the scalar mesons. The thermal
properties of ρ, ω and J/ψ can be obtained by measuring the spectrum
of the µ+µ− pairs. In contrast to ρ, ω and J/ψ, it is difficult to study
the thermal properties of the scalar mesons experimentally, more theoretical
works are still needed.
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4. Conclusion

In this article, we assume the nonet scalar mesons above 1 GeV are q̄q
states and study the temperature dependence of the masses and decay con-
stants of a0(1450) and K∗0 (1430) using the thermal QCD sum rules, and
fit the numerical values into analytical functions, which can be applied in
phenomenological analysis of the thermal QCD and in interpreting heavy-
ion collision experiments. In calculations, we assume the operator product
expansion and quark–hadron duality remain valid at finite temperature, but
replace the vacuum condensates by their thermal expectation values. Fur-
thermore, we take into account both the ground state scalar mesons and
the two-particle intermediate states at the phenomenological side. The nu-
merical results indicate that the masses and decay constants decrease slowly
at T < 120 MeV, then decrease quickly with the increase of T and reach
zero near the critical temperature Tc = 200 MeV. The phase transition takes
place at about T = (120–200) MeV.

This work is supported by the National Natural Science Foundation,
Grant No. 11375063, and the Natural Science Foundation of Hebei province,
Grant Number A2014502017.
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