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The complete spectrum of plasmons of the two interpenetrating plasma
streams is found in a closed analytic form. The orientation of the wave
vector with respect to the stream direction is arbitrary and the plasmas,
which are assumed to be collisionless and spatially homogeneous, can be
nonrelativistic, relativistic or even ultrarelativistic. Our results apply to
the electromagnetic plasma of electrons and passive ions and to the quark–
gluon plasma governed by QCD.
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1. Introduction

A plasma system, which is a complex of particles and fields, supports a
wide variety of waves. Using quantum terminology, one says that the plasmas
reveal rich spectra of collective excitations or modes. The spectra carry in-
formation about the thermodynamic and transport properties of equilibrium
plasmas and about the temporal evolution of nonequilibrium systems. The
waves or modes corresponding to oscillations of charge density or currents
are usually of the highest frequency and thus they play a particularly impor-
tant role in the plasma dynamics. In the case of electromagnetic plasmas,
we deal with electric charges and currents and the electromagnetic waves
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are classical representation of quasiphotons. In the quark–gluon plasma gov-
erned by QCD, there are color charges and color currents and the quasigluon
is the analog of the quasiphoton. We call the collective modes related to the
oscillations of charges and currents as plasmons, not limiting this term to
the equilibrium plasma.

Plasmons, which are found as solutions of dispersion equations, have
been extensively studied for various plasma configurations over decades and
there is a huge literature about the problem, see e.g. the textbooks [1, 2].
However, there is a rather limited number of exact analytic solutions of dis-
persion equations and there are only exceptional cases when the complete
spectrum of plasmons can be found in a closed analytic form. We present
here a general and exact solution of the dispersion equation of the two-
stream system for an arbitrary orientation of the wave vector with respect
to the stream direction. The plasma system is collisionless and spatially ho-
mogeneous, but it can be nonrelativistic, relativistic or even ultrarelativistic.
Our results apply to both electromagnetic and quark–gluon plasmas. The
complete spectrum, which is given in a closed analytic form, consists of
eight modes (four pairs of modes of opposite sign) which are either real or
imaginary. For any orientation of the wave vector, there is one unstable
mode. When the wave vector is perpendicular to the stream direction, we
have the magnetic filamentation mode which continuously changes into the
electrostatic longitudinal mode when the wave vector becomes parallel to
the stream.

Two real modes exhibit the phenomenon of mode coupling, see e.g. the
handbook [3], when the wave vector is almost perpendicular to the stream or
the stream velocity approaches the speed of light. Then, the two dispersion
curves approach each other but they do not cross. The effect is encoded
in the solutions of the dispersion equation we found and to reveal it no
additional reasoning or approximate methods, which are typically used [3],
are needed. The whole spectrum is rather rich and nontrivial and it changes
qualitatively with the orientation of the wave vector.

The two-stream plasma system, which occurs in various plasma physics
experiments, is repeatedly discussed in the literature, see e.g. the textbooks
[1, 2]. In the context of the quark–gluon plasma, it was first studied in [4, 5].
However, as far as we know, the complete spectrum of plasmons in such a
system has not been found in closed analytic form and thus our results are
new and original. Since analytic form of the spectrum greatly simplifies
derivation of various plasma characteristics, the results are also practically
useful.

Presentation of our analysis is organized as follows. In the forthcoming
Sec. 2, we first formulate the problem by writing down the general disper-
sion equation of plasmons. Then, the momentum distribution of plasma
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constituents, which controls the dielectric tensor, is briefly discussed and an
explicit expression of the tensor, which enters the dispersion equation, is
derived. In Sec. 3, we introduce the method to solve the dispersion equation
which is of the form of det[Σ] = 0. Instead of computing the determinant,
we rather invert the matrix Σ and look for poles of Σ−1. An analysis of
the collective modes starts in Sec. 4 with the discussion of two special cases.
Then, we derive the complete set of exact solutions of general dispersion
equations in Sec. 5. The spectrum of plasmons is found for any orienta-
tion of the wave vector. Section 6 discusses the case, which is interesting
both physically and mathematically, when the stream velocity approaches
the speed of light. In Sec. 7, we summarize our study and make some final
remarks.

Our analysis of the two-stream system is methodologically very close to
the extensive study of plasmons in the system where the momentum distribu-
tion of plasma constituents is obtained from the isotropic one by stretching
or squeezing it in one direction [6]. Since the two-stream distribution does
not belong to this category, the technique to invert the matrix Σ needs to
be modified. However, there are some repetitions with the article [6] which
are unavoidable to make the present paper self-contained. We use notation
very similar to that in Ref. [6] with the natural units, where ~ = c = 1,
and the indices i, j, k = 1, 2, 3 which label the Cartesian spatial coordinates.
Lengths of vectors such as k or u are denoted as k and u.

2. Formulation of the problem

The linearized chromodynamic or Maxwell equations of the Fourier trans-
formed (chromo-)electric field can be written in the form

Σij(ω,k)Ej(ω,k) = 0 , (1)

where the matrix Σ is defined as

Σij(ω,k) ≡ −k2δij + kikj + ω2εij(ω,k) , (2)

ω is the frequency, k denotes the wave vector and εij(ω,k) is the (chromo-)
dielectric tensor, see e.g. the review article [7]. External charges and cur-
rents are absent in the system under study and color indices, if needed, are
suppressed in Eqs. (1), (2). A solution of Eq. (1) exists if

det[Σ(ω,k)] = 0 , (3)

which is the general dispersion equation. Its solutions ω(k), which repre-
sent plasmons, are, in general, complex but the wave vector k is assumed
to be real. There are the transverse plasmons, for which the electric field
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is transverse to the wave vector k, and longitudinal plasmons with the elec-
tric field parallel to k. The transverse modes correspond to oscillations of
current, and the longitudinal ones to oscillations of charge density. A mode
is called unstable if =ω(k) > 0, because the amplitude ∼ e=ω(k) t grows ex-
ponentially in time. When =ω(k) ≤ 0, the mode is stable and it is damped
if =ω(k) < 0, as its amplitude decays exponentially in time. The mode is
called overdamped, when additionally it is purely imaginary.

To solve the dispersion equation, the dielectric tensor is needed. As
discussed in e.g. [7], the tensor for a locally chargeless anisotropic plasma in
the collisionless limit equals

εij(ω,k) = δij +
g2

2ω

∫
d3p

(2π)3
vi

ω − v · k + i0+

×
((

1− k · v
ω

)
δjk +

vjkk

ω

)
∇kpf(p) , (4)

where p, Ep and v ≡ p/Ep are the momentum, energy and velocity of
plasma constituents and f(p) is their distribution function. In the case of
electromagnetic plasma, the coupling constant g should be replaced by e
but the results are then in the so-called Lorentz–Heaviside units not in
the Gauss units typically used in the plasma physics. For the quark–gluon
plasma governed by QCD with the SU(Nc) gauge group and one quark flavor,
f(p) = n(p) + n̄(p) + 2Ncng(p), where n(p), n̄(p), ng(p) are the distribu-
tion functions of quarks, antiquarks and gluons of a single color component.
The chromodielectric tensor does not carry any color indices, as the state
corresponding to the momentum distribution f(p) is assumed to be color-
less. The i0+ prescription makes the Fourier transformed dielectric tensor
εij(t, r) vanish for t < 0, which is required by causality. In the kinetic theory,
the infinitesimal quantity i0+ can be treated as a remnant of inter-particle
collisions. Performing the integration by parts, the dielectric tensor (4) can
be rewritten in the form

εij(ω,k) = δij − g2

2ω2

∫
d3p

(2π)3
f(p)

Ep

×

[
δij +

kivj + vikj

ω − v · k + i0+
+

(
k2 − ω2

)
vivj

(ω − v · k + i0+)2

]
, (5)

which will be more convenient for our purposes than expression (4).
The dielectric tensor given by Eq. (4) or (5) is fully determined by the

momentum distribution of plasma constituents. The distribution function
of the two-stream system is chosen to be

f(p) = (2π)3ρ
[
δ(3)(p− q) + δ(3)(p+ q)

]
, (6)
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where ρ is the effective density of plasma constituents in a single stream.
The distribution function (6) can be treated as an idealization of the two-
peak distribution where the particles have momenta close to q or −q but it
is not required that the momenta are exactly q or −q.

The distribution function (6) substituted into Eq. (5) provides the di-
electric tensor which, in turn, gives the matrix (2) of the form

Σij(ω,k) ≡
(
ω2 − k2 − µ2

)
δij + kikj − µ2(k · u)

ω2 − (k · u)2
(
kiuj + uikj

)
−
µ2
(
ω2 + (k · u)2

) (
k2 − ω2

)(
ω2 − (k · u)2

)2 uiuj , (7)

where µ2 ≡ g2ρ/Eq is a parameter analogous to the Debye mass squared,
and u ≡ q/Eq is the stream velocity. It is smaller than the speed of light,
if plasma constituents have nonvanishing mass. If we consider a system of
massless constituents, Eq = |q| and u2 = 1. However, when the distri-
bution (6) is treated as an approximation of the two-peak structure and
the particles have nonzero momenta perpendicular to the stream velocity,
Eq < |q| and u2 < 1. We also note that µ is the only dimensional parame-
ter which enters the problem. Therefore, all dimensional quantities can be
expressed in the units set by the appropriate power of the mass µ.

Our objective is to find a complete set of solutions of the dispersion
equation (3) with the matrixΣ given by Eq. (7). It is not difficult to compute
the determinant and solve the dispersion equation (3) for specifically chosen
orientations of the wave vector. In this way, we will consider two special
cases in Sec. 4. In general, however, it appears much easier to invert the
matrix Σ and look for poles of Σ−1 than to find zeros of the determinant
of Σ. Therefore, we invert the matrix Σ in the subsequent section.

3. Poles of Σ−1

To invert the matrix Σ, one expresses the matrix together with the
inverse matrix Σ−1 in a given basis. Then, the inverse matrix is found
directly from the equation ΣΣ−1 = 1. To choose the appropriate basis,
one observes that the matrix Σ given by Eq. (7) is symmetric (Σij = Σji)
and that it depends on two vectors: k and u. Therefore, the matrix can be
completely decomposed in the basis of four projectors built out of the vectors
k and u and the unit matrix. Following Romatschke and Strickland [8], we
introduce the vector uT which is a component of u transverse to k that is

uiT =

(
δij − kikj

k2

)
uj , (8)
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and we define four projectors

Aij ≡ δij− k
ikj

k2
, Bij =

kikj

k2
, Cij ≡

uiTu
j
T

u2
T

, Dij ≡ kiujT +kjuiT . (9)

The matrix Σ is expressed in this projector basis as

Σij = aAij + bBij + cCij + dDij , (10)

with the coefficients a, b, c, d provided by the equations

kiΣijkj = k2b , uiTΣ
ijujT = u2

T(a+ c) ,

uiTΣ
ijkj = u2

Tk
2d , TrΣ = 2a+ b+ c . (11)

With the matrix Σ given by Eq. (7), the coefficients a, b, c, d equal

a(ω,k) = ω2 − µ2 − k2 , (12)

b(ω,k) = ω2 − µ2 − 2µ2(k · u)2

ω2 − (k · u)2

−
µ2
(
ω2 + (k · u)2

) (
k2 − ω2

)
(ω2 − (k · u)2)2

(k · u)2

k2
, (13)

c(ω,k) = −
µ2
(
ω2 + (k · u)2

) (
k2 − ω2

)(
ω2 − (k · u)2

)2
(
u2 − (k · u)2

k2

)
, (14)

d(ω,k) = − µ2 (k · u)

ω2 − (k · u)2
−
µ2
(
ω2 + (k · u)2

) (
k2 − ω2

)
(k · u)

k2
(
ω2 − (k · u)2

)2 . (15)

When compared to the matrix decomposition applied in the studies [6]
and [8], there is one important difference: the vector u, which is analo-
gous to the vector n from [6] and [8], is not of unit length but u2 ≤ 1.
Therefore, the expression u2 shows up in formula (14).

Expressing the inverse matrix Σ−1 in the same basis (9) and solving the
equation ΣΣ−1 = 1, one finds the inverse matrix in the following form(

Σ−1
)ij

=
1

a
Aij +

−a(a+ c)Bij +
(
−d2k2u2

T + bc
)
Cij + adDij

a
(
d2k2u2

T − b(a+ c)
) . (16)

As seen, the poles of the matrix Σ−1(ω,k) are determined by the equations

a(ω,k) = 0 , (17)

b(ω,k) (a(ω,k) + c(ω,k))− k2u2
Td

2(ω,k) = 0 , (18)
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which are the two dispersion equations equivalent to the general dispersion
equation (3).

The dispersion equation (17) with the coefficient a(ω,k) given by for-
mula (12) has the simple solution

ω2
a(k) = µ2 + k2 , (19)

which represents the transverse plasmon. A real problem is to solve the
dispersion equation (18).

4. Special cases k ⊥ u and k ‖ u

Before considering a general solution of the dispersion equation (18), we
discuss here two special cases k ⊥ u and k ‖ u which will help us to analyze
the general case.

4.1. k ⊥ u
When θ, which is the angle between k and u, equals 90◦ that is k ·u = 0,

coefficients (12)–(15) simplify to

a(ω,k) = ω2 − µ2 − k2 , (20)

b(ω,k) = ω2 − µ2 , (21)

c(ω,k) =
m2
(
ω2 − k2

)
u2

ω2
, (22)

d(ω,k) = 0 . (23)

The dispersion equation (18) reads

(
ω2 − µ2

)(
ω2 − µ2 − k2 +

µ2
(
ω2 − k2

)
u2

ω2

)
= 0 , (24)

and it has three solutions

ω2
0(k) = µ2 , ω2

±(k) =
1

2

(
λ2 + k2 ±

√
(λ2 + k2)2 + 4µ2u2k2

)
, (25)

where λ ≡ µ
√

1− u2. So, there are three pairs of modes of opposite signs.
To clarify a physical character of solutions (25), we explicitly compute

the matrix Σ assuming that u = (0, 0, u) and k = (k, 0, 0). Then, one finds

Σ(ω,k) =

 ω2 − µ2 0 0
0 ω2 − µ2 − k2 0

0 0 ω2 − µ2 − k2 +
µ2(ω2−k2)u2

ω2

 (26)
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and its determinant equals

det[Σ(ω,k)] =
(
ω2 − µ2

) (
ω2 − µ2 − k2

)(
ω2 − µ2 − k2 +

µ2
(
ω2 − k2

)
u2

ω2

)
. (27)

The general dispersion equation (3), that is detΣ = 0, gives, as expected,
solutions (25) and additionally (19). The structure of the matrix (26) clearly
shows that the mode ω0(k) is longitudinal (the electric field is along the wave
vector) and the remaining modes ωa(k), ω±(k) are transverse (the electric
field is perpendicular to the wave vector). The solutions ω2

a(k), ω2
0(k) and

ω2
+(k), which are all positive, correspond to stable real modes, while the

solution ω2
−(k), which is negative, represent two imaginary modes — the

Weibel or filamentation unstable and overdamped modes. Let us also note
that the solutions ω2

0(k) and ω2
+(k) cross each other at k = µu/

√
1 + u2.

4.2. k ‖ u
When the decomposition (10) is used to invert the matrix Σ, the case

k ‖ u needs some care as then uT = 0. The fact that the vectors k and u
are parallel to each other means that the matrix Σ actually depends on one
vector only. Indeed, for θ = 0, when (k · u)2 = k2u2, the matrix equals

Σij(ω,k) =
(
ω2 − µ2 − k2

)
δij

+

(
1− 2µ2u2

ω2 − k2u2
−
µ2u2

(
ω2+k2u2

) (
k2−ω2

)
k2 (ω2 − k2u2)2

)
kikj . (28)

Consequently, one needs only the matrices A and B to fully decompose Σ i.e.

Σ = aA+ bB, (29)

where the coefficients a and b, which are found from the equations

kiΣijkj = k2b , TrΣ = 2a+ b ,

equal

a(ω,k) = ω2 − µ2 − k2 , (30)

b(ω,k) = ω2 − µ2 − 2µ2k2u2

ω2 − k2u2
−
µ2u2

(
ω2 + k2u2

) (
k2 − ω2

)
(ω2 − k2u2)2

. (31)

The inverse matrix is
Σ−1 =

1

a
A+

1

b
B . (32)
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We again have the dispersion equation a(ω,k) = 0, which gives the solu-
tion (19), and instead of the dispersion equation (18), we have b(ω,k) = 0
which gives longitudinal modes, as B projects on the direction parallel to k.

With the coefficient b given by formula (31), the dispersion equation is

ω2
(
ω4 −

(
2k2u2 + µ2

(
1− u2

))
ω2 + k4u4 − µ2k2u2

(
1− u2

))
= 0 , (33)

which, except the trivial solution ω2 = 0, has two solutions

ω2
±(k) = k2u2 +

λ2

2
± λ

2

√
8k2u2 + λ2 , (34)

where, as previously, λ ≡ µ
√

1− u2. As seen, ω2
+(k) is always positive but

ω2
−(k) is negative for k2 < λ2/u2. Then, we have the instability which is

well-known in the plasma physics as the two-stream electrostatic instability.
When u2 → 1, the mode ω−(k) becomes stable and ω2

−(k) = ω2
+(k) = k2.

Solutions (19) and (34) can be also easily found directly from the ma-
trix Σ. Choosing u = (0, 0, u) and k = (0, 0, k) the matrix equals

Σ =

 ω2 − µ2 − k2 0 0
0 ω2 − µ2 − k2 0

0 0 ω2 − µ2 − 2µ2k2u2

ω2−k2u2 − µ2(ω2+k2u2)(k2−ω2)u2

(ω2−k2u2)2

 .
(35)

The equation detΣ = 0 has, as expected, solutions (19) and (34), and the
former one is doubled.

5. General case

We discuss here, in full generality, the dispersion equation (18) with the
coefficients a, b, c, d given by Eqs. (12)–(15). A crucial finding is that
the ratio ω2/(ω2 − (k · u)2)2 factors out in left-hand side of the equation.
Consequently, we get the cubic dispersion equation

a3x
3 + a2x

2 + a1x+ a0 = 0 , (36)

where x ≡ ω2 and the coefficients a0, a1, a2, a3 are the real numbers equal to:

a0 = −
(
µ2u2 + (k · u)2

)(
µ2 (k · u)2 + k2

(
(k · u)2 − µ2

))
, (37)

a1 = (k · u)2
(

(k · u)2 + 2k2 + µ2
(
1 + u2

))
+µ2

(
1− u2

) (
k2 + µ2

)
, (38)

a2 = −k2 − 2 (k · u)2 + µ2
(
−2 + u2

)
, (39)

a3 = 1 . (40)
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As well known, see e.g. [9], all three roots of a cubic equation can be found
algebraically. Since the coefficients a0, a1, a2, a3 are real, the character of
the roots depends on a value of the discriminant

∆ = 18 a0a1a2a3 − 4 a32a0 + a21a
2
2 − 4 a3a

3
1 − 27 a20a

2
3 . (41)

One distinguishes three cases:

— if ∆ > 0, the roots are real and distinct;

— if ∆ = 0, the roots are real and at least two of them coincide;

— if ∆ < 0, one root is real and the remaining two are complex.

One shows that the discriminant (41) computed with the coefficients
(37)–(40) is nonnegative for any k, if 0 ≤ u2 ≤ 1 but there is a domain of k
where ∆ is negative for u2 > 1. This is demonstrated in Fig. 1 where the
discriminant is plotted as a function of k and θ for u2 = 1/2 (left panel) and
u2 = 3/2 (right panel). Since the stream velocity is limited by the speed of
light, we always have three real solutions of the dispersion equation (36).
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 0

 30 000

 θ 
30°

60°

90°

µ
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12µ
∆

0°
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90°

µ
k

12µ
∆
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Fig. 1. The discriminant ∆ as function of k and θ for u2 = 1/2 (left panel) and
u2 = 3/2 (right panel).

The real solutions of the cubic equation can be written down in Viète’s
trigonometric form [9]

ω2
n(k) = 2

√
−p
3

cos

[
1

3
arccos

(
3
√

3q

2p
3
2

)
− 2πn

3

]
− a2

3a3
, (42)

where n = 1, 2, 3 and

p ≡ 3a3a1 − a22
3a23

, q ≡ 2a32 − 9a3a2a1 + 27a23a0
27a33

. (43)
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These formulas assume that p < 0 and that the argument of the arcco-
sine belongs to [−1, 1]. These conditions are guaranteed as long as ∆ =
−a43(4p3 + 27q2) > 0 which is the case under consideration.

The complete set of dispersion curves of plasmons predicted by formu-
las (19) and (42) is shown in Fig. 2 for u2 = 3

4 and four different orientations
of the wave vector k. As can be seen, the solution ω2

3(k) corresponds to the
unstable and overdamped modes. We also observe in the figure that the
dashed (green) line representing ω2

1(k) approaches the dotted (blue) line
which refers to ω2

2(k). At θ = 90◦, the lines hit each other but they do
not cross. This is the phenomenon of the mode coupling which is nicely
explained in §64 of the textbook [3].

Fig. 2. Dispersion curves ω2(k) vs. k2 at u2 = 3/4 for four values of the angle θ
equal 0◦ (a), 30◦ (b), 60◦ (c), and 90◦ (d). The solid (red) lines are for ω2

a(k), the
dashed (green) for ω2

1(k), the dotted (blue) for ω2
2(k), and the dash-dotted (orange)

for ω2
3(k). The light cone is represented as a light gray line.

How the general solutions (42) are related to those found in Sec. 4 for
k ⊥ u and k ‖ u? In the former case, we have the relations:

ω2
1(k) =

{
ω2
0(k) for k < µu√

1+u2
,

ω2
+(k) for k ≥ µu√

1+u2
,

(44)
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ω2
2(k) =

{
ω2
+(k) for k < µu√

1+u2
,

ω2
0(k) for k ≥ µu√

1+u2
,

(45)

and ω2
3(k) = ω2

−(k). The crossing of the solutions ω2
0(k) and ω2

+(k) derived
in Sec. 4.1 actually results from the limit (k ·u)→ 0. The general solutions
shown in Fig. 2 do not cross each other.

The special solutions obtained in Sec. 4.2 for k ‖ u are related to the
general solutions as: ω2

1(k) = ω2
a(k), ω2

2(k) = ω2
+(k) and ω2

3(k) = ω2
−(k).

6. Special cases u2 = 1

We consider here the case when the stream velocity u equals the speed
of light. This case is interesting both from physical and mathematical points
of view. The dielectric tensor of the two-stream system with u2 = 1 exactly
coincides (under the replacement u → n and 2µ2 → m2) with that of
the plasma with an extremely prolate (infinitely elongated in one direction)
momentum distribution discussed in the study [6]. Therefore, the plasmon
spectra are obviously the same. Nevertheless, when the spectrum is found
as a limit u2 → 1, the mode crossing observed in the extremely prolate
plasma gets a different physical meaning. As explained below, instead of
mode crossing, we rather have the extreme mode coupling mentioned in the
previous section.

The dispersion equation (36) u2 = 1 is also interesting mathematically.
The form of the solutions (42) with the trigonometric and inverse trigono-
metric functions is required, if we deal with the so-called casus irreducibilis,
when three real and distinct roots of a cubic equation cannot be expressed in
terms of real radicals. However, a cubic equation, which has three real and
distinct roots, can be sometimes reduced to a quadratic equation by means
of the rational root test. Then, all three real roots of the cubic equation are
expressed by real radicals and Viète’s trigonometric form is an unnecessary
complication.

Since the coefficient a3 in Eq. (36) equals unity, see Eq. (40), the rational
root test suggests to look for a root of the equation among the factors of a0
given by the formula (37). When u2 = 1, there is a factor µ2+(k ·u)2 which
is indeed the root of the equation. Consequently, the cubic equation (36) is
reduced to a quadratic one, which is easily solved, and the three solutions
read

ω2
0(k) = µ2 + (k · u)2 , (46)

ω2
±(k) =

1

2

(
k2 + (k · u)2

±
√
k4 + (k · u)4 + 4µ2k2 − 4µ2 (k · u)2 − 2k2 (k · u)2

)
. (47)
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The solutions ω2
0(k) and ω2

+(k) are positive for any k and consequently
they represent real modes. The modes ω0(k) and ω+(k) cross each other at
k = µ√

2 sin θ
. The solution ω2

−(k) is negative for k < µ| tan θ| and positive
otherwise. It represents the Weibel unstable mode and its overdamped part-
ner for sufficiently small wave vectors. When k ⊥ n or θ = 90◦, the unstable
mode exists for all values of k. When k ‖ n or θ = 0◦, the configuration
is cylindrically symmetric and there is no instability. This is the situation
we have already encountered in Sec 4.2 — the unstable longitudinal mode
disappears as u→ 1.

Comparing solutions (46) and (47) to the general ones given by for-
mula (42), one realizes that

ω2
1(k) =

{
ω2
0(k) for k < µ√

2 sin θ
,

ω2
+(k) for k ≥ µ√

2 sin θ
,

(48)

ω2
2(k) =

{
ω2
+(k) for k < µ√

2 sin θ
,

ω2
0(k) for k ≥ µ√

2 sin θ
,

(49)

Fig. 3. Dispersion curves ω2(k) vs. k2 at u2 = 1 for four values of the angle θ equal
0◦ (a), 30◦ (b), 60◦ (c), and 90◦ (d). The solid (red) lines are for ω2

a(k), the dashed
(green) for ω2

1(k), the dotted (blue) for ω2
2(k), and the dash-dotted (orange) for

ω2
3(k). The light cone is represented as a light gray line.
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and ω2
3(k) = ω2

−(k). Therefore, one sees that the crossing of the solutions
ω0(k) and ω+(k) is actually an artifact of the limit u2 → 1. The physical
solutions are the combinations of (48) and (49).

The complete spectrum of plasmons, which includes ω2
1(k), ω2

2(k), ω2
3(k)

and ω2
a(k), is shown in Fig. 3 for four different orientations of the wave

vector k. The qualitative difference, when compared to the case u2 < 1,
occurs when θ → 0. Then, the solutions ω2

2(k) and ω2
3(k) merge into one

double solution ω2
2(k) = ω2

3(k) = k2.

7. Summary and final remarks

We have performed a systematic analysis of plasmons in the two-stream
plasma system. The complete spectrum, which consists of four pairs of
modes of opposite signs, has been found in a closed analytic form. At any
orientation of the wave vector and u2 < 1, three pairs of modes are pure real
and one pair is pure imaginary for sufficiently small wave vectors. When the
wave vector is bigger than the critical one, all four pairs of modes are real.
Among the imaginary modes, one is unstable and one is overdamped. An
interesting feature of the unstable mode is that when the orientation of the
wave vector changes from parallel to the stream velocity to perpendicular,
the mode smoothly changes from longitudinal to transverse. In the first
case, we have the electrostatic two-stream instability and in the latter one
the filamentation or Weibel instability. When u2 → 1, the electrostatic
unstable mode disappears. Therefore, when u2 = 1 and k ‖ u, the whole
spectrum of modes is real.

In the limiting cases k ⊥ u and u2 = 1, one seems to observe mode
crossing. However, a confrontation of the special case solutions with the
general ones shows that there is no mode crossing but rather extreme mode
coupling when the dispersion curves hit each other but they do not cross.

A mathematical structure of the plasmon spectrum is also interesting.
In the general case, we deal with the casus irreducibilis when the three
solutions of the cubic dispersion equation cannot be expressed in terms of
real radicals. Therefore, the solutions are given by the trigonometric and
inverse trigonometric functions. However, in the extreme cases k ⊥ u,
k ‖ u and u2 = 1, the cubic equation is reduced to the quadratic one and
the solutions are expressed in terms of real quadratic radicals.

The two-stream configuration repeatedly occurs in the physics of elec-
tromagnetic plasma and thus our results are hopefully of some practical
interest. In the case of the quark–gluon plasma produced in relativistic
heavy-ion collisions, the two-stream system is rather irrelevant. However,
such a system can be treated as a simple but nontrivial model of an unsta-
ble plasma. We have actually used the model to study the energy-loss of a
high-energy parton [10] and it can be also applied to other problems.
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