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Momentum transfer resulting from the interaction of two patches on
the colloidal particle surfaces is, by nature, off-center and is responsible for
particle’s rotations. We present how to compute exchange of momentum
and angular momentum in the case when patches interact via a square well
potential. Elements of the presented algorithm consist mostly of physical
and geometrical conditions, partly requiring numerical calculations. The
model has been applied to the two-dimensional system of spherical particles
with three patches equally placed on the edge of the particles. An example
of typical collisional frequencies resulting from molecular dynamics applied
to a Monte Carlo equilibrated configuration and its comparison to the case
with an unbonded hexagonal starting configuration have been given. It has
been shown that at the agglomerated state, when particles are positionally
arrested, the dynamics is dominated by the bounces with the borders of
the potential well without hitting the cores of the particles.
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1. Introduction

Attention attracted by colloidal particles commensurates with the pro-
gress in fabrication of the well-defined objects with dimensions ranging from
nanometers to micrometers. The main asset of the colloids lies in the fact
that the interactions between colloidal particles may be controlled, thus
allowing for realization of new scenarios of structural and thermodynamic
behavior [1–5]. Recently, the so-called patchy colloids have become a subject
of intense research. The surfaces of such particles are decorated with inter-
acting spots that can attract each other and form bonds (discrete bonding
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sites). Their number, size and strength can be tunable. As a result of the
bonds, they may organize into structures for functional materials and de-
vices. A promising approach is the self-assembly, which is the spontaneous
organization of matter into ordered structures. On the theoretical side, stud-
ies based on the theory of associating fluids [6–11] and computer simulations
of simple models have provided a great number of new results [12–15]. The-
oretical efforts help also in studying new phenomena such as condensation
and clustering e.g., present in protein solutions or strongly dipolar fluids [16].
In industrial contexts [17], a model of hard particles with patches has been
successfully used to describe behavior of pure or mixed chain molecules. An-
other challenge is to provide a route to designing ideal gels [18] or successful
control of a wide range of equilibrium self-assembled structures.

Dynamical properties of patchy colloids form another class of problems.
First of all, it requires noting that during a collision, regardless of the form of
the patch–patch interaction used, the transfer of momentum is not along the
center–center line, but at the patch–patch line. Although there exist models
describing anisotropic particle rotations based on the center–center direction
(e.g. the Gay–Berne or Ruijgrok potential in liquid crystals), the off-center
interactions are neither worked out nor popular in molecular dynamics study,
most likely due to its complexity. In the present paper, we show how to
compute the exchange of momentum and angular momentum in the case
when the patches interact via the square well potential for the purpose of
the event driven molecular dynamics and the resulting outcome of the event
driven simulations. The proposed algorithm is built from the blocks that
are mainly conditions of physical or geometrical nature but it also requires
numerical work based on the small time steps like in the standard molecular
dynamics.

The paper is organized as follows. Section 2 describes the potential of
patches, the needed kinetic variables and the resulting types of collision.
Section 3 presents how to find the point of contact of real collision and the
time needed to arrive at this point. Section 4 describes the numerical part
and Section 5 finally provides the expressions and conditions for momentum
transfer. In Section 6 the molecular simulation results for two chosen starting
configurations are presented and, finally, in Section 7 the summary is given.

2. The potential interaction, kinetic variables
and types of collision

Within the framework of the patch–patch center model (PPC), we con-
sider a two-dimensional system composed of large colloidal spherical particles
of the radius R and diameter D, whose surface is decorated with the inter-
acting spots. The interaction potential between the spots follows the rule
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V =

 ∞ , rspot = 0
V0 , 0 < rspot < u0
0 , otherwise

, (1)

where rspot here is counted from the center of the spot (not from the center
of the large colloidal particle) to the center of another spot. Let the position
of the kth spot belonging to the ith particle be pki .

The state of a particle is given by the position of its mass center r and its
orientation is given by the unit vector along the main axis, a. The main axis
can be chosen due to the symmetry of the spots on the surface or arbitrarily
(see Fig. 1).

D

D
P

Fig. 1. The patchy spherical colloid. The inner circle is the hard core sphere. The
patches sensitive areas are depicted as 3 small circles, the outer ring is called the
aureole, its dimension is given by the size of the patch interaction. The aureoles
help in finding overlap conditions. The patchy spheres are the objects that are
oriented in space — orientations are given by the arrows.

The kinetic state comprises two velocities: linear v and angular Ω. If
one considers 2D confinement, the angular velocity has only one component
along the Z direction, whereas the linear velocity has components along the
X and the Y direction.

The particle moves freely both translationally and rotationally. After
the time t, its center of mass has the new position r′

r′ = r + vt (2)

and the new orientation a′

a′ = <x<y<za . (3)

In the above, v is the vector of the linear velocity and <i is the rotational
matrix about the ith axis with the angle αi = Ωit with Ωi being the value
of ith component of the angular velocity. The above condition can be used
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not only for a constant particle velocity (as well translational as rotational)
but also for the case when the time step is small enough that the particle
velocity does not change significantly, hence it can be treated as constant.

The word “collision” is used here either for an attractive or repulsive
event between two particles. By an attractive event, we mean the spot–
spot interaction (note that the result can be either bonding of two particles
or dissociation), by a repulsive event, we mean core–core interaction. Two
characteristic diameters are considered: D which is the diameter of the true
spherical particle and Dp = D + u0 which is the diameter of the sphere of
the particle enlarged by the distance u0 due to the spot potential area.

The collision between two particles can be of five types:
(a) “core” collision

It takes place when the spheres collide as hard bodies and not via
spot–spot interaction.

(b) “capture” collision
It is considered when the spot of a particle enters the interacting zone
of the other particle spot; as a consequence, the two particles become
bonded.

(c) “dissociation”
It is considered when the spot of a particle leaves the interacting zone
of the other particle spot; as a consequence, the two particles become
unbonded.

(d) “bounce” collision
The particles, which are bonded, reach the border of interacting zones,
yet they have no enough energy to break a bond. As a result, a bounce
occurs at the border point.

(e) “core–spots” collision
In this peculiar case, the point of contact coincides exactly with the
positions of the spots. (As it will be further seen, this collision type,
however hard to encounter during the simulations, is very useful while
checking consistency of the collisional formulas.)

3. Finding the point of contact and the collision time

In this section, geometrical conditions for the collisions between two
patchy particles are considered. Due to the spots presence, they cannot be
given by a single formula and need a separate analysis for each situation.

Following the scheme from [19, 20], two particles with orientational de-
grees of freedom, say i and j, under hard “core” collision touch each other
at the point of contact whose position is given by

rC = ri +Rui = rj +Ruj . (4)
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The vectors ui and uj connect the centers of the mass with the point of
collision. As it will be further seen, these two vectors are also among crucial
factors that determine the amount of the momentum transfer between two
particles. Finding rC is one of the first tasks in the event driven molecular
dynamic program. At the beginning, let us recall the basic conditions for
two hard spheres:

Two spherical particles are approaching each other if the value bij

bij = vij · rij (5)

is less then zero. In (5), the relative velocity vij follows

vij = vi − vj (6)

and the relative position vector rij is

rij = ri − rj . (7)

If the reference frame is fixed to the particle j (Fig. 2), then the particle i
will move along the trajectory parallel to the vector vij . This is also the
direction of the vector s, which is the distance to the tangent point of the
spheres. In the case of hard spheres, this point will be exactly the point of
collision. In the case of hard sphere with an aureole, this denotes the tangent
point of two external surfaces of the aureoles and establishes a geometrical
condition for considering interactions within aureole’s area.

Fig. 2. Geometrical conditions for the freely moving spheres collision.

If bij < 0 holds, then there are two possible geometric points, when
the spheres are in contact. To find these points, one considers a triangle
built upon the vector of the relative position rij , the vector of s and the
relative distance between the centers of the spheres in contact (equal to the
diameter D). For this triangle, the trigonometric property holds
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D2 = r2ij + s2 + 2 rijs cos(ϕ) (8)

which is a square equation for the unknown s, where ϕ is the angle between
the vectors rij and vij .

Solutions of Eq. (8) give the points of contact

s1,2 =

−2rij cos(ϕ)±
√

4r2ij cos2(ϕ)− 4
(
r2ij −D2

)
2

. (9)

The smallest root is the closest and the real point of contact. Using (9), the
time tcol at which the collision takes place can be obtained as

tcol =

√
(rij · vij)2 − v2ij

(
r2ij −D2

)
− rij · vij

v2ij
. (10)

Similar equations are obtained, if one considers any movement of the
particles from the rij into r′ij positions. Then, the cosine theorem for a
triangle gives

r′
2
ij = r2ij + 2tvij · rij + t2v2ij . (11)

If the new position is to coincide with the point of contact r′2ij = D2,
from (11) one, as expected, obtains also (10).

The formula (10) is characterized by the spheres diameter, so can be
applied as well for hard core interacting spheres as for the spheres with
aureoles. Introducing the symbol C(s)

ij = r2ij −D2
(s), where the index (s) can

be used to distinguish between the types of spheres (let us use Cij for hard
spheres and C(a)

ij for aureoles) (10) can be given then as

tcol =
−bij ±

√
b2ij − v2ijC

(a)
ij

v2ij
. (12)

Cij can never be less than zero, since this denotes nonphysical overlap-
ping of hard bodies. On the contrary, C(a)

ij can be lesser or greater than
zero since overlapping of the aureoles zones are allowed. In the latter case,
two situations are possible. (a) Two particles are moving toward each other
and, consequently, a hard core collision may take place. (b) The separation
of two particles is getting larger and the particles sooner or latter will reach
the tangent position of two aureoles. Depending on their energy, the par-
ticle may separate or bounce. Bouncing means the change of the velocity,
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so the particle again move toward each other. It may also look like rattling
within the aureoles zones. In view of the future diffusion studies, it is worth
noting here that the rattling in cages may cause negative parts in velocity
autocorrelations and can substantially influence the diffusional properties.

In order to find the real collision time, the following conditions must be
checked:

I. bij < 0 (Spheres are approaching.)

(a) C(a)
ij < 0 (Aureoles are overlapping.)

(1) b2ij − v2ijCij > 0 (Cores can collide.)

tcol =
−bij−

√
b2ij−v2ijCij

v2ij
(Time to the cores collision.)

(2) b2ij−v2ijCij<0 (Cores do not collide. Aureoles can be tangent.)
Time condition for the two tangent aureoles follows:

t =
−bij+

√
b2ij−v2ijC

(a)
ij

v2ij
.

The real time of collision must be found numerically on the basis
of the spot–spot distance |pki − plj | = u0 (for any spot pair k, l).
The above time for the tangent aureoles forms the upper limit for
the numerical search.

(b) C(a)
ij > 0 (Aureoles are not overlapping.)

(1) b2ij − v2ijC
(a)
ij < 0 (No collision)

(2) b2ij − v2ijC
(a)
ij > 0 (Attractive collision with capture possible.)

Time condition for the two tangent aureoles follows:

t =
−bij−

√
b2ij−v2ijC

(a)
ij

v2ij
.

After reaching this time, the condition (a) concerning overlapping au-
reoles applies. The collision denotes here only capture.

II. bij > 0 (Centers recede.)

(a) C(a)
ij > 0 (Aureoles are not overlapping. No collision)

(b) C(a)
ij < 0 (Aureoles are overlapping.)

Time condition for the two tangent aureoles follows:

t =
−bij+

√
b2ij−v2ijC

(a)
ij

v2ij
.

This time forms upper limit for the numerical search.
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III. bij = 0 (Spheres are at a constant distance.)

(a) C(a)
ij < 0 (Aureoles are always overlapping.)

In this case, the spot–spot interaction can occur because of the
particles rotations.

4. Numerical calculations of the real collision times

The aureoles geometry, as presented above, is only additional helpful
indication that allows to speed up calculations. In principle, the particles
move in straight lines, but, because of rotations, the patches trajectories are
no longer linear. To find the point when the two spots are exactly at the
distance u0, one has to consider the following procedure.

Each point that belongs to the surface of a particle can be described by
the formula

rs = r +Ru . (13)

We are looking for the time when the following condition is fulfilled[
ri + vit+Ru′i(t)− rj − vjt−Ru′j(t)

]2
= u02 , (14)

where u′i(t) = <x(t)<y(t)<t(z)ui. This equation can be written as Ψ(t) = 0,
where Ψ(t) is a strongly nonlinear, however a smooth function of time. We
can find the solution of Eq. (14) using, for instance, the Newton–Raphson
method [21]. The starting time we begin the search at is zero and the closing
(bracketing) time is dictated according to the geometrical rules discussed in
the previous section (due to the condition of two tangent aureoles). If the
minimum of Ψ is reached without fulfilling Eq. (14), then the procedure may
stop, if the particles are not fast rotating, because the spots are departing
from each other since that moment.

The case of fast rotating particles is a separate problem. In this case,
Ψ may exhibit even several extremal points. As it is well known, the standard
Newton–Raphson method fails, if the function, whose roots are searched for,
exhibits extrema. Several approaches exist to overcome this problem like,
for instance, combination of bisection and Newton–Raphson techniques [21].
We propose here also another way. It is presented in Fig. 3.

The standard Newton–Raphson method extends the tangent line at a
current point ti until it crosses zero, then it assumes as the next guess for
ti+1 just the obtained abscissa of that zero-crossing. The method is fast
and powerful unless it encounters extrema. To get close to the root, one
has to pass trough these extremal points. Let us assume that we go from
left to right (just in accordance with the growing time t). We calculate the
first derivative at the chosen point ti to obtain the tangent line and find
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Control points

Ff(t)

Tt

Fig. 3. Double step modified Newton–Raphson method.

the zero-crossing point ti+1. At the same time, we calculate the control
points tci due to the formula tci+2 = tci + 2 ∗ (tci+1 − tci) as long as the
control point is less than ti+1. If the tangent line does not cross the zero
level or leads to the point far from the root (where the function Ψ changes
sign), we limit the number of control points to 4 or 5. Checking the values
of the derivatives and the function itself, we judge whether a minimum or
maximum has been passed, so one can proceed to the regime, where the
standard Newton–Raphson method works well.

5. The exchange of momentum and angular momentum
during a collision

5.1. Conservation laws

During a collision, both momenta (P i,P j) and angular momenta (J i,J j)
of the colliding bodies are changed into new values (denoted with a prime
superscript)

P ′i = P i + ∆P , P ′j = P j −∆P ,

J ′i = J i +Rui ×∆P , J ′j = J j −Ruj ×∆P , (15)

where the exchange of momentum ∆P (see Fig. 4) in the case of the in-
teracting patches A and B has the orientation along the line connecting
their centers, denoted as uAB and directed from A to B . During a collision,
the momentum and angular momentum must be conserved. The momen-
tum conservation is straightforward from (15) and the angular momentum
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DP

Fig. 4. The momentum transfer under spot–spot interaction. Due to its off-center
character, it will influence the rotation of the particle.

conservation can be justified using

J i + J j −Rui × P i −Ruj × P j = J ′i + J ′j −Rui × P ′i −Ruj × P ′j . (16)

Applying (15) into the right-hand side of (16), one obtains

J i+Rui×∆P +J j−Ruj×∆P −Rui× (P i + ∆P )−Ruj× (P j −∆P ) ,
(17)

which gives exactly the left-hand side of (16).
The unknown value of ∆P should be obtained from the energy conser-

vation law

P 2
i

2m
+
P 2
j

2m
+
J2
i

2I
+
J2
j

2I
=

(P i + ∆P )2

2m
+

(P j −∆P )2

2m

+
(J i +Rui ×∆P )2

2I
+

(J j −Ruj ×∆P )2

2I
± V0 , (18)

where m is the mass of the particle and I is its moment of inertia (we
assume that the spots do not influence the overall inertness). The last
term of (18) should be taken with plus in the case when the particle leaves
the potential region (the case of “dissociation”), and with minus when the
particle enters the potential region (the case of “capture”). In the case of
hard bodies collision, there is no term V0 at all. The formula (18) holds for
elastic collisions. Once such a ∆P is obtained, it can be easily extended
to the case of inelastic collisions, for instance, by taking a fraction of ∆P .
Such an idea not only leads to the dissipation effect [28, 29] but also to the
agglomeration, even without bonding among particles.
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The right-hand side of Eq. (18) reads

±V0
(P i+∆P )2

2m
+

(P j−∆P )2

2m
+

(J i+Rui ×∆P )2

2I
+

(J j−Ruj ×∆P )2

2I

= ±V0 +
P 2
i

2m
+
P 2
j

2m
+

(∆P )2

m
+

(P i ·∆P )

m
− (P j ·∆P )

m
+
J2
i

2I
+
J2
j

2I

+
(Rui ×∆P )2

2I
+

(Ruj ×∆P )2

2I
+
RJ i · ui ×∆P

I
− RJ j · uj ×∆P

I
,(19)

so equation (18) reads

0 =
(∆P )2

m
+

(P i ·∆P )

m
− (P j ·∆P )

m
+

(Rui ×∆P )2

2I

+
(Ruj ×∆P )2

2I
+
RJ i · ui ×∆P

I
− RJ j · uj ×∆P

I
± V0 . (20)

The momentum exchange because of the spot–spot interaction is directed
along the line connecting spots A and B, so ∆P = ∆PuAB (see Fig. 4).

Introducing this into (20), we receive

(∆P )2

m
+

∆P (P ij · uAB)

m
+

(∆P )2(Rui × uAB)2

2I
+

(∆P )2(Ruj × uAB)2

2I

+
∆PRJ i · ui × uAB

I
− ∆PRJ j · uj × uAB

I
± V0 = 0 . (21)

The above equation is of the square type Ax2 + Bx + C = 0 with the
coefficients

A =
1

m
+

(Rui × uAB)2

2I
+

(Ruj × uAB)2

2I
, (22)

B =
(P ij · uAB)

m
+
RJ i · ui × uAB

I
− RJ j · uj × uAB

I
, (23)

C = ±V0 . (24)

From the two solutions of the above square equation (∆P = −B±
√
∆

2A ), one
is nonphysical. To justify which solution is the right one, let us now set the
collision conditions to the simplified case with V0 = 0 and uAB ‖ ui and
uAB ‖ uj (the central collision of two hard spheres). As it is easily seen,
the root with +

√
∆ leads to nonphysical particles overlapping. Also, if our

reasoning is correct, the obtained formula for the momentum exchange in
the case when V0 6= 0,

∆P = −1
2P ij · uAB − 1

2

√
(P ij · uAB)2 ± 4mV0 , (25)

should coincide with the collisional formulas from [22].
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Indeed, using uAB =
rij

rij
and bij = rij · vij , one gets

m∆v = −m
2
vij ·

rij
rij
− m

2

√(
vij ·

rij
rij

)2

± 4V0
m

= −m
2

bij
rij
− m

2rij

√
b2ij ±

4V0r2ij
m

, (26)

so

∆v = − 1

2rij

bij +

√
b2ij ±

V0r2ij
m

 (27)

which agrees with appropriate formulas from [22].

5.2. Final equations

Finally, having done the above testing of consistency, we can write down
the momentum exchange for the rotating spheres with patches as follows:

(a) “core” collision

∆P = −1
2P ij · rij/rij − 1

2

√
(P ij · rij/rij)2 . (28)

It takes place, when the spheres collide as hard bodies, with rij = D. In
this case, the particles interact under the center–center assumption, so the
angular momentum of each particle is not changed.

(b) “capture” collision
It is considered, when the spot of a particle enters the interacting zone of
the other particle spot, as a consequence, the two particles become bonded

∆P =
−
(
(P ij ·uAB)

m + RJi·ui×uAB
I − RJj ·uj×uAB

I

)
−
√
∆

2
(

1
m + (Rui×uAB)2

2I +
(Ruj×uAB)2

2I

) (29)

with ∆

∆ = I1 + I2 =

[
(P ij · uAB)

m
+
RJ i · ui × uAB

I
− RJ j · uj × uAB

I

]2
+4V0

(
1

m
+

(Rui × uAB)2

2I
+

(Ruj × uAB)2

2I

)
. (30)
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(c) “dissociation”
It is considered, when the spot of a particle leaves the active zone of the
other particle spot; as a consequence, two particles become unbonded. The
equation is similar to (29)

∆P =
−
(
(P ij ·uAB)

m + RJi·ui×uAB
I − RJj ·uj×uAB

I

)
+
√
∆

2
(

1
m + (Rui×uAB)2

2I +
(Ruj×uAB)2

2I

) (31)

but ∆ here must be

∆ = I1− I2 =

[
(P ij · uAB)

m
+
RJ i · ui × uAB

I
− RJ j · uj × uAB

I

]2
−4V0

(
1

m
+

(Rui × uAB)2

2I
+

(Ruj × uAB)2

2I

)
. (32)

It is valid under the condition that I1 > I2.
(d) “bounce”

If the above condition I1 > I2 is not fulfilled, then the particle will bounce
at the inner border of the other particle spot interaction zone. The change
of momentum will be given by the formula like (31) with V0 = 0 and −

√
∆

∆P =
−
(
(P ij ·uAB)

m + RJi·ui×uAB
I − RJj ·uj×uAB

I

)
−
√
∆

2
(

1
m + (Rui×uAB)2

2I +
(Ruj×uAB)2

2I

) . (33)

(e) “core–spots” collision
In this peculiar case, the point of contact coincides exactly with the positions
of the spots. (As it has already been shown, this type of collision, however
hard to encounter during the simulations, is very useful while checking con-
sistency of the collisional formulas.)

5.3. Comparison between the patch–patch center (PPC)
and the Kern–Frenkel model (KF)

The most popular interaction model that has been intensively used so
far in studying properties of different patchy systems is the Kern–Frenkel
model [23]. This model assumes that on the surface of particles exist small
patchy areas, which act as windows (see Fig. 5). If it is possible to draw a line
that passes through the windows of two closely positioned particles in such a
way that it joins their centers, then the interaction between them is governed
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nNno torque exchangenNno torque exchange

NN torque exchange

nNno torque exchangenNno torque exchange

NN torque exchange

Fig. 5. The Kern–Frenkel interaction of two patchy particles. In the upper case,
there is no torque exchange.

by a standard center–center square well potential VSW(rij)Ψ(rij ,ui,uj)

VSW(rij) =

{
−V0, D < r < λD
0, D > r

, (34)

Ψ(rij ,ui,uj) =

{
1, 0 < |ui · rij | > cos θ0
0, otherwise , (35)

where θ0 is determined by the size of the patch.
How does then the torque occur in such a model? It is connected with the

idea how the patch is created — it is cut out from the particle surface by the
cone, whose sharp peak is just in the center of the particle. Only in the case
when the particles are positioned in such a way that the line joining their
centers belongs also to the surface of one of the cones, the condition for the
torque exchange is taken into account. This condition is imposed according
to the square well potential (34), where the relevant variables are angles. If
the patches are small and their number is large, then such situations can
be frequently met. When the patches are large and their number is smaller,
then the torque exchange becomes less frequent and the dynamics will attain
an artificial character. It will be especially significant in the case of Janus
particles, when the patch, in fact, is half of the particle surface, hence most
of the dynamics will be without a torque exchange at all.
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Since almost all of the studies performed so far with the KF potential
concern equilibrium properties and phase diagrams, the momentum transfer
was not an important issue. Yet, if the dynamical or diffusional properties
are concerned, then the KF model will be a reliable choice only when the
patches are very small. Also, only then these two models, the KF model and
PPCmodel, are expected to provide a comparable outcome. This conclusion,
however, requires more detailed studies.

6. Application of the PPC model formulas to molecular
dynamics simulations

On the basis of the above described PPC model, we have performed
molecular dynamics simulations for two characteristic initial configurations.
As the first case (configuration A, Fig. 6), a perfect hexagonal unclustered
system has been chosen and as the second case (configuration B, Fig. 7),
an aggregated system is considered. For an aggregated system, we use a
configuration that was obtained previously with the help of the Monte Carlo
simulations. In both cases, the velocities values were randomly taken from
the Maxwellian distribution adjusted to the assumed temperature. This
temperature was kept constant throughout all the simulations by the use
of the thermostat applied every 200 collisions to compensate for a possible
numerical drift. The considered system is relatively small and consists of
480 particles of the diameter D = 1 with three symmetrically positioned
surface patches. The depth of the square well is equal to V = 0.05 and
the interaction distance is u0 = 0.0595D. This value ensures that only one
bond is possible between two distinct particles. The density is low and equals
ρ = 0.1 and the temperature is put to kT = 0.1. The size of the simulation
box for these parameters is equal to Lbox =

√
N/ρ = 69.57.

Figure 6 presents typical collision numbers that come from the MD sim-
ulations of a hexagonal configuration made of the unbound particles and
represents the early stage of the agglomeration process, in which only few
dumbbell or triplet structures are being created. The time of simulations
corresponds here to 10 000 collisions altogether. In what follows, we will also
use the dimensionless time τ in terms of the unit value τ0 = D m

kT , which
corresponds to the time of a particles’s free flight over the distance of the
diameterD with the averaged velocity corresponding to the temperature kT .

Because of a great difference between core and bounce collisions and
capture and dissociation collisions, the logarithmic scale must have been
used. At the beginning, when there are no clusters at all, the core collisions
are prevailing and no dissociates are present. Yet, when bound structures
are being slowly formed, the bounces at the sides of the potential walls occur.
They are becoming almost as frequent as core collisions, and after some time,
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even more frequent. This latter fact is worth paying special attention, since
it is an indicator of the rattling between different points of the patchy well,
without hitting the core of the particle. Such an effect will be suppressed in
the Kern–Frenkel model due to the potential wall geometry. The number of
captures dominates the number of dissociates due to the cluster formation.
Note also the fact that all the profiles of the collision numbers in Fig. 6 begin
at a nonzero time. This time corresponds to the time interval needed to pass
to the first collision in the case, when the system is perfectly hexagonal. It
will depend on the initial distribution of the velocities.
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Fig. 6. Collision numbers (right) from a short time dynamics for the bounce, core,
dissociation and capture events obtained with the starting configuration of perfect
hexagonal order (left).

The MD simulation results for the case of agglomerated particles are
shown in Fig. 7. This figure presents the dynamics of collisions inside ag-
gregates. In this example almost all the particles are bound, either by the
binding energy or by the positional arrest, hence no longer distance free
flights occur within the time of simulation. The overall number of collisions
performed is the same as in the previous case (10 000), yet the time associ-
ated with this number is about 60 times smaller. Because of the bindings,
the simulation can cover only little positional movements (like tremblings) of
the particles and confirms that the bounces at the well edges without inter-
mediate core interactions are indeed prevailing. There is also a big difference
in the core collision number — it is much smaller than in the first example
— at the cost of the bounces. No new captures and only very few dissociates
are encountered, which means that within the Monte Carlo simulation the
agglomeration process has reached a stable stage.
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Fig. 7. Collision numbers (right) from short time dynamics for bounce, core, dissi-
pation and capture events for the starting configuration of MC equilibrated system
(left).

In Fig. 8, an example of the change of the particles positions that took
place within the MD simulation is presented. In the left panel, which is the
result of the simulation with the initial hexagonal unbound structure, the
configuration bears no longer any resemblance to hexagonal order. One also
observes a few dumbbells and one triplet. On the other hand, in the right
panel, a change of the particles position within an aggregate is given. Such
an aggregate is, in general, a soft and a mobile structure, hence different
parts of it may have different mobility. Indeed, parts which are more like
chains, especially at the ends of the agglomerate, seem to be softer. Thicker
parts, at the same time, look less mobile.

0

20

0

0

Fig. 8. An example of change of the particles position: black are the particles at the
beginning of simulations, gray (red) are the particles after 10 000 collisions. Left
panel shows the system A and right panel is for the system B.
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It is worth noting that bounces at the walls of the square well potential
are prevailing in both above cases, although the number of bonds in the first
case is small. This means that the crucial factor responsible for this effect
is the curvature of the potential walls.

All the above numerical investigations have been performed under the
characteristics of the patches that conform to the condition that two particles
may form only one bond, which is realized by tailoring the patches positions
on the colloid surface at large distances. The presented interaction model
is, however, general and can be used to any architecture of the patches. The
assumption of one bond per pair is also the most popular in the studies
performed so far. Probably, this is so because of the need to create a firm
and stable background of the possible phase diagrams scenarios. Only then,
when such background knowledge is collected, extensions of the problem to
the case when surface based interactions have more complex geometry, will
be justified. As an attempt toward such extensions, one may consider the
Monte Carlo investigations concerning cases with a chain of multiple spots
placed on the spherical particle equator [8] or in the case of Janus particles
[24, 25], where the different interactions are associated with the whole halves
of the particles.

7. Summary and discussions

We consider a system of patchy colloids — spherical particles whose sur-
faces are decorated with interacting patches. Such particles, depending on
the state parameters like density or temperature, form agglomerates, the dy-
namics of which depends strongly on the degree of bonding. A set of formulas
for the off-center collisions for the particles interacting via the patch–patch
square well potential has been proposed and applied to molecular dynamics
simulations. Examples of collisional numbers describing the phenomena of
bonding and unbonding — captures and dissociates — and core collisions
and bounces at the square well potential walls are given. It has been shown
that at the agglomerated state, the dynamics is dominated by the bounces
with the potential well borders without hitting cores of the particles.

The importance and validity of the presented PPC model is dictated by
the established role of the square well potential as the simplest well model
and its place among all other models. With this respect, it reminds the
Kern–Frenkel model, yet it assumes more realistic situation, when the inter-
action centers of the patches are positioned more at the surface of the main
particle instead of its center. It is especially important in the case of larger
objects like colloids. This assumption, as opposite to the KF model, leads to
the ever present torque exchange. This will have an impact on kinetic prop-
erties such as diffusional and viscous properties, the heat transfer rate and
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spatio-kinetic correlations. It is already known that cluster formation itself
causes the viscosity of nanofluid and thermal conductivity to change [26, 27].
If one considers here also hindrance on torque transfer among particles, then
the change in relaxation effects of orientational degrees of freedom will be
even more enhanced.

The presented model is quite general and can be easily extended to more
complex cases. For instance, it can be used as well for elastic as for inelastic
collisions, for 2D or 3D particles, for different surface coverage of patches
and also it can be extended to particles forming multiple bonds.

The authors thank Prof. Francesco Sciortino, Frank Smallenburg and
Paulo Teixeira for their help and encouragement to study patchy colloids.
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