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We study fermion–boson transitions. Our approach is based on the
3 × 3 subequations of Dirac and Duffin–Kemmer–Petiau equations, which
link these equations. We demonstrate that free Dirac equation can be
invertibly converted to spin-0 Duffin–Kemmer–Petiau equation in the pres-
ence of a neutrino field. We also show that in special external fields, upon
assuming again existence of a neutrino (Weyl) spinor, the Dirac equation
can be transformed reversibly to spin-0 Duffin–Kemmer–Petiau equation.
We argue that such boson–fermions transitions are consistent with the main
channel of pion decay.
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1. Introduction

There are many ideas connected with fermion–boson (FB) analogies in
the literature. For example, there is FB equivalence, FB duality, FB trans-
mutations, to name a few. There are also intermediate statistics — paras-
tatistics and anyons. There is, finally, supersymmetry. More on these ideas
can be found in Refs. [1–4], see also [5–8] and [9]. It seems, however, that a
broader and unifying picture is still missing.

Important step in understanding FB analogy was made by Polyakov
who discovered possibility of fermion–boson transmutation of elementary
excitations of a scalar field interacting with the topological Chern–Simons
term in (2 + 1) dimensions [10]. Recently, the smooth and controlled evo-
lution from a fermionic Bardeen–Cooper–Schrieffer (BCS) superfluid state
to a molecular Bose–Einstein condensate (BEC) has been realized in ultra-
cold Fermi gases [11]. On the other hand, we have shown recently that
solutions of the Dirac equation can be transformed in the non-interacting
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case, assuming the existence of a constant spinor, to solutions of the spin-0
Duffin–Kemmer–Petiau (DKP) equation and vice versa [9]. Possible analogy
between BCS–BEC transition and our findings is motivation of our work.

In the present paper, we generalize results of [9] in two directions. Firstly,
we generalize the fermion–boson transformation connecting solutions of free
Dirac and spin-0 DKP equations in presence of Weyl spinor. Secondly, we
construct analogous transformation in presence of external fields.

The paper is organized as follows. In the next section, we review 3 × 3
subequations of the Dirac and the spin-0 DKP equations in special external
fields and we raise the problem of their covariance. Covariance of these
equations was established in [13], while the problem of covariance of their
solutions was solved, to some extent, in Ref. [9].

New results are described in Sections 3 and 4. In Section 3, we start with
the free Dirac equation and, assuming existence of a Weyl spinor, we derive
the spin-0 DKP equation, improving our construction described in [9]. It
is suggested that the mechanism of boson to massive fermion and massless
neutrino transition is related to pion decay. In Section 4, we show that in
external longitudinal fields, upon assuming again existence of a Weyl spinor,
the Dirac equation can be transformed to a set of two 3 × 3 equations in
longitudinal fields, similar, but not identical, to equations derived in [13].
Finally, we show that if we switch over to crossed fields we arrive at 3 × 3
equations which are equivalent to the spin-0 DKP equations. We discuss
our results in the last section with special emphasis on pion decay. In what
follows, we use notation and conventions described in [12, 13].

2. Subequations of Dirac and DKP equations in external fields

The Dirac equation in external field can be written in spinor notation
as [14]

πAḂηḂ = mξA

πAḂξ
A = mηḂ

}
, (2.1)

where πAḂ is defined as πAḂ =
(
σ0π0 +−→σ · −→π

)AḂ, πµ = pµ − qAµ, and
π11̇ = π22̇, π12̇ = −π21̇, π21̇ = −π12̇, π22̇ = π11̇. Equation (2.1) can be
written in the spinor representation of γ matrices as γµπµΨ = mΨ , where
Ψ =

(
ξ1, ξ2, η1̇, η2̇

)T .
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In longitudinal fields [15], Eq. (2.1) can be splitted into two 3 × 3 sub-
equations [13]

π11̇η1̇ = mψ11̇
1̇

π21̇η1̇ = mψ21̇
1̇

π22̇ψ11̇
1̇
− π12̇ψ21̇

1̇
= mη1̇

 , (2.2)

π12̇η2̇ = mψ12̇
2̇

π22̇η2̇ = mψ22̇
2̇

−π21̇ψ12̇
2̇

+ π11̇ψ22̇
2̇

= mη2̇

 . (2.3)

Each of these equations can be written in covariant form [12, 13] yet some
components of spinor ψAḂ

Ċ
are missing. This problem, mentioned in Intro-

duction, will be solved in the next section.
The DKP equation in the interacting case can be written within spinor

formalism as
πAḂψ = mψAḂ

πAḂψ
AḂ = 2mψ

}
. (2.4)

In crossed fields [15], we can write Eq. (2.4) as a set of two equations [13]

π11̇ψ = mψ11̇

π21̇ψ = mψ21̇

π11̇ψ
11̇ + π21̇ψ

21̇ = mψ

 , (2.5)

π12̇ψ = mψ12̇

π22̇ψ = mψ22̇

π12̇ψ
12̇ + π22̇ψ

22̇ = mψ

 , (2.6)

each of which describes particle with mass m. Equation (2.4) and the set of
two equations (2.5), (2.6) are equivalent.

The 3 × 3 equations (2.5), (2.6) and (2.2), (2.3) are similar. However,
they differ in spinor contents and Eqs. (2.2), (2.3) involve longitudinal fields,
while Eqs. (2.5), (2.6) correspond to crossed fields.

3. Generalized fermion–boson transition in non-interacting case

The problem of missing components of spinor ψAḂ
Ċ

, mentioned in the pre-
vious section, is rather serious because it means that theory is not fully co-
variant. The problem was solved in Ref. [9] assuming that ηḂ (x) = α̂Ḃ χ (x),
where α̂Ḃ was a constant spinor. This ansatz for ηḂ (x) leads, however, to
difficulties of another kind since constant spinors do not appear in nature
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(although constant Grassman spinors are postulated in some variants of su-
persymmetrical theories). To solve both problems at once, we make a more
general assumption

ηḂ (x) = αḂ (x)χ (x) , (3.1)

where αḂ (x) is a two-component neutrino spinor, i.e. it fulfills the Weyl
equation, pAḂαḂ (x) = 0. We note that pAḂαḂχ = χpAḂαḂ + αḂ p

AḂχ =

αḂ p
AḂχ and thus we can rewrite the free Dirac equation as

αḂp
AḂχ = mξA

pAḂξ
A = mαḂχ

}
. (3.2)

Equation (3.2) can be further written as

α1̇p
11̇χ = mψ11̇

1̇

α2̇p
12̇χ = mψ12̇

2̇

α1̇p
21̇χ = mψ21̇

1̇

α2̇p
22̇χ = mψ22̇

2̇(
p11̇ψ

11̇
1̇

+ p21̇ψ
21̇
1̇

)
+
(
p11̇ψ

12̇
2̇

+ p21̇ψ
22̇
2̇

)
= mα1̇χ(

p12̇ψ
11̇
1̇

+ p22̇ψ
21̇
1̇

)
+
(
p12̇ψ

12̇
2̇

+ p22̇ψ
22̇
2̇

)
= mα2̇χ


, (3.3)

where
ψ11̇
1̇

+ ψ12̇
2̇

= ξ1

ψ21̇
1̇

+ ψ22̇
2̇

= ξ2

}
. (3.4)

To reduce number of spinor components, we demand that

ψCḊ
Ḃ

= αḂ (x)χCḊ (x) , (3.5)

with the same spinor αḂ (x), fulfilling the Weyl equation pAḂαḂ (x) = 0.
Substituting (3.5) into Eqs. (3.3), we obtain

α1̇p
11̇χ = mα1̇χ

11̇

α1̇p
21̇χ = mα1̇χ

21̇(
p11̇α1̇χ

11̇ + p21̇α1̇χ
21̇
)

+
[
p11̇α2̇χ

12̇ + p21̇α2̇χ
22̇
]

= mα1̇χ

α2̇p
12̇χ = mα2̇χ

12̇

α2̇p
22̇χ = mα2̇χ

22̇[
p12̇α1̇χ

11̇ + p22̇α1̇χ
21̇
]

+
(
p12̇α2̇χ

12̇ + p22̇α2̇χ
22̇
)

= mα2̇χ


.

(3.6)
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Since the Weyl spinor αḂ (x) is arbitrary, equations pAḂχ = mχAḂ, defin-
ing components of χAḂ, follow immediately. We can thus remove spinor
components α1̇, α2̇ from equations defining χAḂ.

We have shown that for constant spinor, αḂ (x) = α̂Ḃ, the system of
equations (3.6) splits into two 3 × 3 equations [9]. We are going to find
conditions enabling similar splitting for the Weyl spinor αḂ (x).

We write the first and the second term in square brackets, [1] and [2],
respectively, in the form

[1] = χ12̇p11̇α2̇ + χ22̇p21̇α2̇ + 1
mα2̇

(
p11̇p

12̇ + p21̇p
22̇
)
χ , (3.7a)

[2] = χ11̇p12̇α1̇ + χ21̇p22̇α1̇ + 1
mα1̇

(
p12̇p

11̇ + p22̇p
21̇
)
χ , (3.7b)

where equations pAḂχ = mχAḂ have been used.
Since both terms in (3.7), proportional to 1

m , vanish identically we can
decouple equations (3.6) obtaining

p11̇χ = mχ11̇

p21̇χ = mχ21̇

p11̇χ
11̇ + p21̇χ

21̇ = mχ

 , (3.8)

p12̇χ = mχ12̇

p22̇χ = mχ22̇

p12̇χ
12̇ + p22̇χ

22̇ = mχ

 , (3.9)

where unnecessary components α1̇, α2̇ have been removed, provided that the
following equations are fulfilled(

χ11̇p11̇α1̇ + χ21̇p21̇α1̇

)
+
(
χ12̇p11̇α2̇ + χ22̇p21̇α2̇

)
= 0(

χ11̇p12̇α1̇ + χ21̇p22̇α1̇

)
+
(
χ12̇p12̇α2̇ + χ22̇p22̇α2̇

)
= 0

 . (3.10)

Taking into account the form of solutions of the Weyl equation, αḂ (x) =

α̂Ḃe
ik·x, where α̂Ḃ is a constant spinor and kµkµ = 0, we rewrite Eqs. (3.10)

in the form
k11̇ϕ

1 + k21̇ϕ
2 = 0

k12̇ϕ
1 + k22̇ϕ

2 = 0

}
, (3.11)

where
ϕ1 = α̂1̇χ

11̇ + α̂2̇χ
12̇

ϕ2 = α̂1̇χ
21̇ + α̂2̇χ

22̇

}
. (3.12)
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Non-zero solutions ϕ1, ϕ2 are possible if determinant of the system of
equations (3.11) is zero. The determinant, k11̇k22̇− k12̇k21̇ = kµkµ, vanishes
in two physically distinct cases: for kµ = 0 and for kµkµ = 0. In the first
case, the spinor αḂ (x) is constant, αḂ (x) = α̂Ḃ, and no restrictions are
imposed on ϕ1, ϕ2. The fermion–boson transformation in presence of a
constant spinor was investigated in the non-interacting case in [9].

We consider now the second possibility. Since we have assumed that
αḂ (x) = α̂Ḃe

ik·x is a solution of the Weyl equation, the condition kµkµ = 0
is fulfilled. Moreover, equations (3.8), (3.9) are the set of two 3×3 equations
equivalent to the spin-0 DKP equation. Therefore, χ fulfills the Klein–
Gordon equation. Thus χ (x) = Ceil·x, where lµ is a four-vector, lµlµ = m2.

Since the Weyl equation as well as the set of equations (3.8), (3.9)
are covariant, we can consider special reference frames. In a frame kµ =

(1, 0, 0,−1), lµ = (m, 0, 0, 0), we have α̂1̇ = 0, χ12̇ = 0, ϕ1 = 0, k22̇ = 0 and
it follows that equations (3.11), (3.12) are fulfilled.

We have thus described invertible transition from the free Dirac equation
for a spin-12 fermion, in presence of a massless spin-12 fermion, described by
a dotted Weyl spinor, to the free DKP equation for a spin-0 boson. Indeed,
starting from Eqs. (3.8), (3.9) and assuming conditions (3.10), which as has
been stated above can be easily fulfilled, we can return to equation (3.2)
and, finally, to the Dirac equation (2.1) in non-interacting case. Hence the
inverse transformation, from boson to fermions, can be written as

B −→ (F ν̄F ) , (3.13)

where B and F stand for boson and fermion, respectively, while ν̄F denotes
antineutrino associated with the fermion F . In this reaction, (F ν̄F ) is a
two-fermion composite state. The process (3.13) seems to correspond to the
first stage of the main channel of pion decay [16]

π− −→
(
µ− ν̄µ

)
−→ µ− + ν̄µ , (3.14)

where we have postulated formation of the intermediate complex (µ− ν̄µ).
Indeed, the boson to fermions transformation, constructed in this section,

cannot describe direct decay of a pion into muon and neutrino. This follows
from the fact that masses of a boson particle and a fermion, into which it
transforms in presence of a neutrino field, are equal in our theory. Therefore,
the present formalism seems to apply to the first stage of the reaction (3.14)
only, with postulated formation of the intermediate complex state (µ− ν̄µ)
of mass m = mπ− = 139.570 MeV/c2. In the second stage of the process
(3.14), the complex state decays into muon of mass mµ− = 105.658 MeV/c2

and massless neutrino, the energy excess
(
mπ− −mµ−

)
c2 converted into

neutrino (mainly) and muon kinetic energies. We shall comment on the
suggested reaction in the last section.
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4. Fermion–boson transition induced by a change-over
of external fields

In this section, we carry out splitting of the Dirac equation in the inter-
acting case. Let us assume as before the ansatz (3.1) and pAḂαḂ (x) = 0.
Computing πAḂηḂ, we get

(p− qA)AḂ αḂχ =
(
pAḂαḂ

)
χ+ αḂ

(
pAḂχ

)
− qAAḂαḂχ = αḂπ

AḂχ ,

(4.1)
and we can rewrite the Dirac equation (2.1) as

αḂπ
AḂχ = mξA

πAḂξ
A = mαḂχ

}
, (4.2)

where we assume that external field is longitudinal, i.e. fulfills conditions[
π0 ± π3, π1 ± iπ2

]
= 0.

We can now repeat all steps described in the preceding section arriving
at equivalent of Eq. (3.7)

[1] = χ12̇p11̇α2̇ + χ22̇p21̇α2̇ + 1
mα2̇

(
π11̇π

12̇ + π21̇π
22̇
)
χ , (4.3a)

[2] = χ11̇p12̇α1̇ + χ21̇p22̇α1̇ + 1
mα1̇

(
π12̇π

11̇ + π22̇π
21̇
)
χ . (4.3b)

We note now that terms in rounded brackets vanish identically in longi-
tudinal fields and we get

π11̇χ = mχ11̇

π21̇χ = mχ21̇

π11̇χ
11̇ + π21̇χ

21̇ = mχ

 , (4.4)

π12̇χ = mχ12̇

π22̇χ = mχ22̇

π12̇χ
12̇ + π22̇χ

22̇ = mχ

 , (4.5)

provided that, again, conditions (3.10) are fulfilled but now χAḂ, χ are so-
lutions of Eqs. (4.4), (4.5) in longitudinal fields.

Since solutions of the Weyl equation are of the form of αḂ (x) = α̂Ḃe
ik·x,

where α̂Ḃ is a constant spinor and kµkµ = 0, we rewrite Eqs. (3.10) as
equations (3.11), (3.12). It follows that determinant of Eqs. (3.11), k11̇k22̇−
k12̇k21̇ = kµkµ, vanishes. Therefore, equations (3.11), (3.12) express one
constraint only, which can be written, for example, as(

k11̇α̂1̇π
11̇ + k21̇α̂2̇π

22̇
)
χ =

(
−k11̇α̂2̇π

12̇ − k21̇α̂1̇π
21̇
)
χ . (4.6)
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Now, we note that Eq. (4.6) can be solved, for longitudinal potentials, by
separation of variables, if we put χ (x) = f

(
x0, x3

)
g
(
x1, x2

)
since π11̇, π22̇

act only on x0, x3, while π12̇, π21̇ act only on x1, x2.
Let longitudinal fields in (4.4), (4.5) be switched off and then crossed

fields, obeying
[
π0, π3] = [π1, π2

]
= 0, are turned on. It follows that equa-

tions (4.4), (4.5), in presence of such crossed fields, are the 3× 3 equations
(2.5), (2.6) obtained from the spin-0 DKP equations (2.4). Therefore, we
can pass directly from equations (4.4), (4.5), now in crossed fields, to the
DKP equations (2.4).

5. Discussion

In Section 2, we have reviewed the procedure of splitting the Dirac equa-
tion into two 3×3 equations in the non-interacting [12] as well as interacting
case [13]. These equations can be written in covariant form as Dirac equa-
tions with some projection operators but do not contain all components of
spinors used in the splitting. This problem was solved in the free case in
Ref. [9] where we assumed that ηḂ (x) = α̂Ḃ χ (x), where α̂Ḃ was a constant
spinor. This ansatz for ηḂ (x) is not fully satisfactory since constant spinors
do not appear in nature.

To solve these problems, we have assumed in the present paper ansatzes
(3.1), (3.5), involving neutrino field. The free Dirac equation has been con-
verted to the set of 3× 3 equations (3.8), (3.9), all spinors in the equations
appearing in complete form. There are constraints, (3.11), (3.12), but they
can be easily fulfilled. It follows that equations (3.8), (3.9) are equivalent
to the spin-0 DKP equations. The inverse transformation, from boson to
fermion, in presence of neutrino field, seems to correspond to the first stage
of main channel of pion decay (3.14) where formation of the intermediate
complex state (µ− ν̄µ) has been assumed. Therefore, kinematics of the reac-
tion products is missing in the present theory. There is, of course, another
problem, since muon neutrino is massless in this formalism, although neu-
trino oscillations indicate that neutrinos are massive [16].

We have also constructed analogous transition for the Dirac equation in
longitudinal fields. The resulting equations (4.4), (4.5) are not equivalent to
the DKP equation, not in the case of longitudinal fields. However, switching
over to crossed fields in these equations, after removing neutrino components
α1̇, α2̇, we get immediately the DKP equation (2.4). This continuous and
invertible fermion–boson transition induced by switch-over of external fields
bears some analogy to BCS-BEC transition in ultracold Fermi gases [11]
mentioned in Introduction. Further analysis of this problem is needed.

There are several necessary ingredients of these mechanisms: 3×3 equa-
tions, Weyl spinor αȦ (x) and, in the interacting case, switch-over of exter-
nal fields. The present mechanism is an improvement over that of paper [9]
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since it applies to the interacting case and uses physically meaningful neu-
trino spinor aḂ (x) rather than a troublesome constant spinor âḂ. The 3×3
equations may provide a clue to the nature of the transition mechanism.
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