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We discuss how to implement, in lattice gauge theories, external charges
which are not commensurate with an elementary gauge coupling. It is
shown that an arbitrary, real power of a standard Wilson loop (or Polyakov
line) can be defined and consistently computed in lattice formulation of
Abelian, two dimensional gauge theories. However, such an observable can
excite quantum states with integer fluxes only. Since the non-integer fluxes
are not in the spectrum of the theory, they cannot be created, no matter
which observable is chosen. Also the continuum limit of above averages
does not exist unless the powers in question are, in fact, integer. On the
other hand, a new continuum limit exists, which is rather intuitive, and
where above observables make perfect sense and lead to the string tension
proportional to the square of arbitrary (non-necessary commensurate with
gauge coupling) charge.

DOI:10.5506/ APhysPolB.46.247
PACS numbers: 11.10.—z, 12.20.—m, 11.15.Ha

1. Introduction

Confinement remains a challenge in spite of the spectacular progress in
studying non-perturbative QCD, e.g. with lattice methods. Many intuitive
models have been proposed over years to elucidate this phenomenon. In
particular, the Schwinger model has been a source of valuable inspiration,
also in this case. In 1975 Coleman, Jackiw and Susskind have shown [1] that
the energy of two external charges, separated by a distance L, grows linearly
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with L for small mass, m, of dynamical fermions

E(L) = me (1 — cos (%%)) L, (1)

where e is a charge of dynamical fermions and ¢ that of external sources.
This result was then generalised to non-Abelian systems in the large N
(colour) limit with essentially the same string tension [2, 4|. It has also a
simple interpretation in terms of screening.

This paper originated in an attempt to confront (1) with lattice cal-
culation and eventually extend it to larger masses of dynamical fermions.
However, to do so, one has to introduce on a lattice an external source
with an arbitrary charge, not commensurate with the elementary charge e
of dynamical fermion, say, a quark. Surprisingly, we have not found any
studies of this issue in the literature. Therefore, in this paper, we would like
to explore even simpler question: how to represent arbitrary real charges
in a lattice version of two dimensional pure U(1) gauge theory (Quantum
Maxwell Dynamics, QMDy).

2. Basics

Partition function of QMDy on a N, x N; periodic, lattice is known
analytically in terms of modified Bessel functions I,(3), see e.g. [5]

Z = / d(links)eSPlaauettes) — 53 1 (g)NeNe (2)

In the continuum limit Nya = L, Nya =T, 1/ = e?a?
Z = #Zpe BT B, =1e*n’L. (3)

Hence, it is saturated by well known states of topological fluxes [3]. Since
there are no dynamical degrees of freedom in two dimensions, the theory
would have been trivial if not for a non-trivial topology. Only integer mul-
tiples of elementary charge are allowed.

External sources are introduced by means of Wilson loops

W(I') = Mepe™, (4)

where [ labels U(1) variables (or just links) on a rectangular contour I
Their average values

Z(W(I)) = /d(links)W(F)eS = Enln(ﬁ)NtNx_ntn:cInJrl (B)™n= (5)

have a simple and appealing interpretation in the continuum limit
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Z(W) = 5, exp <—€22n2L(T - t)) exp <—622 (n*(L — R) + (n+1)R) t)
(6)

in terms of additional fluxes extending between external charges. One can
easily introduce higher charges of external sources (just replace W[I'] —
(W[I'])™), however again, they would have to be integer multiples of e and
would result in replacing n + 1 by n + m in (6).

The obvious candidate for a pair of sources with arbitrary charge g is then
an arbitrary real power (W[I'))?, with Q = g/e. At first sight, it may rise
some questions of gauge invariance and non-uniqueness. However, a little
more careful examination shows that, in fact, there is nothing wrong with
this proposal. Since W[I'] is gauge invariant, any function f(W) should also
be. Second, the non-uniqueness of (W) causes only a technical obstacle, for
MC evaluation of (6), which can be readily avoided by consistent followup
of a particular branch of the power function. These assertions are confirmed
by Fig. 1 where the MC calculations are confronted with the analytical
predictions which can be readily obtained as above yielding

Z(W®) = Sy LN e S(Q = (n— m))H7e. (7)
The overlap function
S(Q —n+m) = (sinm(Q — n+m)/m(Q —n+m))’

results from the integration over two opposite links in the contour I'. For
integer @, (7) reduces to (5) with already mentioned interpretation. However
for arbitrary, real @ things are different as discussed in the next chapter.
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Fig.1. Numerical data for charged Wilson loops. The Hybrid Monte Carlo al-
gorithm was employed for the simulations, and lattices of size 24 x 24 at f = 3
(48 million measurements) and 34 x 34 at 8 = 6 (19.2 million measurements) were
used. (a) Monte Carlo data for charged Wilson loops. (b) Extracted string tension
oq as a function of charge for § = 3 and 3 = 6.
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3. Q-loops

Naively, one might expect that a Q-loop would excite a flux with an
arbitrary charge ¢ = Qe with the string tension og ~ ¢®. This, however,
is not the case. Equations (5), (6) tell us that the only quantum states in
the system are fluxes with multiples of the elementary charge e. Therefore,
a Q-loop can excite only these states and the value of () controls solely the
amplitude with which given flux is excited.

Not surprisingly, this is confirmed by lattice calculations. In Fig. 1, the
string tension, as extracted from lattice calculation of (W), is shown for a
range of @s.

For given real @), the overlap S(Q) is strongly peaked around the nearest
integer, hence only this flux is excited in practice. This explains the steps
seen in Fig. 1 (b).

All above was done in the dimensionless lattice units. On the other hand,
an attempt to obtain the continuum limit of (7) gives

e 4 ey 2
Ymn €Xp <2n L(T — t)) exp <2 (n*(L — R) + m°R) t>
xS(Q — (n—m))+0/e,

which does not exist for arbitrary @. The overlaps S vanish rapidly (with
a — 0) for arbitrary @ and are not compatible with integer-valued fluxes
m,n unless () is again integer. This lends credit to the original suspicion that
one cannot consistently introduce fractional (or more generally, arbitrary
real) charges on a periodic lattice. However, there exists a quite natural
limit where (7) makes a perfect sense. It can be termed as a classical limit
of large ) and will be now discussed in detail.

4. Classical continuum limit of Q-loops

For better illustration, we will calculate the Green’s function for the time
evolution of a gauge field in the presence of two external charges separated
by a distance R. As in [3], the continuous system is defined on a spatial circle
with circumference L. Consequently, there is only one degree of freedom.
We chose it as a constant (in z) value of the x component of a gauge field:
Az (t) = A(t).

On a lattice, we begin with the matrix element of the transfer matrix for
two Polyakov lines' separated by n, lattice units, with charge ¢ = Qe

G = ({8} Tpapl {6)) = [ dp}e@ci@mees. (®)

! That is Wilson loops winding along the periodic time direction. See Ref. [5] for more
details.
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Similar steps as before (character expansion and integration over vertical
links) give for G in the Coulomb gauge on a lattice

G (@/’ @) _ Em,nijyx_nwlng(Q . (TL . m))em(Nw—nx)(@—@')eimnx(@—@/) 7
(9)
where © (@) is a common, in Coulomb gauge, value of all spacial link angles
in a lower (upper) time slice.

We are now ready to define the new limit which renders the arbitrary
charge ¢ meaningful. This is the classical limit of large @, such that the
actual dimensionfull charge ¢ = Qe is finite. It requires the gauge coupling e
to tend to zero in appropriate way. Moreover, the large @@ and small e limit
is taken before the continuum limit. The limit can be roughly viewed as
consisting of two steps. In the first part 8 is taken to be large, as usual,
however because e is small rather than the lattice constant a (c.f. (3)). This
gives

Ly 2
G = Xy, nexp <_25 (n* (N —ng) +m nx)>S(Q —(n—m))
Xein(sznz)AQGimnzA@ '

Now, two things happen: (1) at large § and fixed lattice distances, impor-
tant contributions to the sum come from large fluxes (m,n ~ b = /B),
exponentials become smooth functions of u = n/b and v = m/b, and (2) at
the same time, () becomes ~ b, so we can write

1
Q:nga g=— b=— — o0 (10)
e g qa ea

and obtain

G = B/dudv exp (—% (uQ(Nz —ng)+ v2n$))S (b (g_1 —(u— v)))

. / - /
Xezbu(sznm)(@fQ )ezbvnz(éf@ )

)

using

S (bA) =X Z5(A), (11)

we can do one integral to obtain

G = \/B/duexp (-1 (UQ(Nx_nx)+ (U_gil) nz))

Xeiu(N,;—nz)(A—A’)ei(u—gfl)nz(A—A’)

)



252 P. Korcyr, M. KoreN, J. WOSIEK

where we have also rewritten the phase factors in terms of the continuum
field A = A/e, ©1, = eaN,A. Now, do the Gaussian integral and take the
continuum limit. To this end, rearrange the quadratic terms and the phase
factors, p = ny /Ny,

G = \/B{/duexp (—%(u — P/9)2Nx)ei(uﬂ/g)NzAA}
X exp (_%972/}(1 B p)Nx)

which gives finally
N2
o A—A 2
G (A/,A,e) =B 27T—aexp —£(7> exp <—q2p(1 - p)La>
a

which is, again, proportional to the kernel for propagation of a free particle
over an infinitesimal time lapse € = a, but now the propagation takes place
in a constant background potential

yo©
= T o)L (12)

with arbitrary, real value of a classical charge g. 3 ~
Notice that the coordinate A is now not periodic. Periodicity A — A+%’;
was lost while taking the e — 0 limit. For the same reason, the discrete
spectrum of topological fluxes has turned into the continuous one of free
momenta u — p/g.
However, some memory of the periodic nature of the microscopic system
remains. Namely, the effective string tension

2
o= p(l-p) (13)

vanishes at R = 0, L. At these configurations, the microscopic string be-
tween external sources begins/completes a single winding around the circle
increasing the effective flux by one quantum. Since V represents the dif-
ference between the sum of the two fluxes (inside and outside the pair of
sources) and the effective single flux around the circle, it vanishes at R = 0
and L. In other words: integer, and only integer, (in terms of winding)
fluxes are “screened” (or better: accommodated) by the intrinsic spectrum
of periodic QMDs.
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Given existence of the new limit, it is also important to estimate how fast
(or slow) it can be reached in practice. This can be answered by confronting
the analytical predictions with actual MC simulations. Similar calculations
for the trace of (8) give the easily testable prediction for the MC average of
two Polyakov lines on a lattice with unit length in time direction

<P$PQ> o exp (—%q2a2p(l —p)Nz) . (14)

The limit is taken with Q? = ¢?a®B with ga kept fixed. In the continuum,
above prediction reads

<P£PQ> cont. fm exp (—1¢*p(1 — p)La). (15)

The above can be generalized for an arbitrary Ny x N, lattice and we obtain

<P5PQ> ity exp (—%q2a2p(1 — p)NNy) (16)
and
nt. lim
<P£5PQ> ORI exp (—%qu(l —p)LT). (17)

This is tested in Fig. 2 for Q = 0.85/1/2 by a simulation on a 6 x 6 lat-
tice. The actual numerical implementation profited from the equivalence
with a spin chain of length 36 [6]. The latter was simulated using the cluster
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Fig. 2. Comparison of <P6T2PQ> measured on a 6 x 6 lattice (data points) with the
analytic prediction of Eq. (7) and with the continuum limit given by Eq. (17)

(horizontal lines).
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algorithm |7] which practically eliminates the critical slowing down prob-
lem and the errors were estimated using the I'-method, following Ref. [8].
Simulated points perfectly agree with Eq. (7) which is depicted in Fig. 2 as
a dashed curves (n; was set to Ny since we are dealing with two Polyakov
loops separated by a distance n,). The positions of the horizontal lines were
calculated using Eq. (17) and correspond to the continuum prediction.

5. Conclusions

Arbitrary, real powers of Wilson loops (or Polyakov lines) are natural
candidates if one wishes to study, on a lattice, external charges which are not
commensurate with the elementary gauge coupling. However, introduction
of such observables raises some subtle questions which show up even in the
simplest gauge models. We have discussed them in the case of Quantum
Maxwell Dynamics — a pure gauge U(1) theory in two dimensions.

Q-loops, as we call them, can be consistently defined on a lattice: re-
sults of MC simulations fully agree with the analytical predictions which are
readily available in this simple model.

They do not excite/create quantum states (fluxes) with arbitrary real
charge, however. Such states do not exist in the theory. Instead, a @Q-loop
excites mostly the quantum state of flux with the integer charge which is
closest to the “charge carried by a Q-loop”. This charge controls the ampli-
tude with which integer (in units of elementary charge) charges are excited.

Above applies to the lattice. The continuum limit of @Q-loops does not
exist unless a charge of @-loop is multiple of the elementary gauge coupling.

However, a modification of the continuum limit is possible where Q-loops
are well defined and give rise to some interesting physics. The modification
is inspired by classical considerations and applies when the arbitrary charge
of external sources is much larger than that of the elementary flux. Then,
the discrete quantum spectrum becomes continuous and the effective fluxes
with arbitrary charge emerge. Existence of this effective, classical behaviour
was also confirmed numerically and the ranges of parameters where it is seen
were estimated.
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